scholarly journals Inhibition of fibroblast growth factor-inducible 14 (Fn14) attenuates experimental tubulointerstitial fibrosis and profibrotic factor expression of proximal tubular epithelial cells

Author(s):  
Mai Luo ◽  
Mengmeng Liu ◽  
Wei Liu ◽  
Xiao Cui ◽  
Siyue Zhai ◽  
...  

Abstract As a proinflammatory cytokine, tumor necrosis factor-like weak inducer of apoptosis (TWEAK) participates in the progression of renal fibrosis by engaging its receptor, fibroblast growth factor-inducible 14 (Fn14). However, the effect of Fn14 inhibition on tubular epithelial cell-mediated tubulointerstitial fibrosis remains unclear. This study was designed to elucidate the role of TWEAK/Fn14 interaction in the development of experimental tubulointerstitial fibrosis as well as the protective effect of Fn14 knockdown on proximal tubular epithelial cells. A murine model of unilateral ureteral obstruction was constructed in both wild-type and Fn14-deficient BALB/c mice, followed by observation of the tubulointerstitial pathologies. Fn14 deficiency ameliorated the pathological changes, including inflammatory cell infiltration and cell proliferation, accompanied by reduced production of profibrotic factors and extracellular matrix deposition. In vitro experiments showed that TWEAK dose-dependently enhanced the expressions of collagen I, fibronectin, and α-smooth muscle actin in proximal tubular epithelial cells. Interestingly, TWEAK also upregulated the expression levels of Notch1/Jagged1. Fn14 knockdown and Notch/Jagged1 inhibition also mitigated the effect of TWEAK on these cells. In conclusion, TWEAK/Fn14 signals contributed to tubulointerstitial fibrosis by acting on proximal tubular epithelial cells. Fn14 inhibition might be a therapeutic strategy for protecting against renal interstitial fibrosis.

2012 ◽  
Vol 302 (9) ◽  
pp. F1121-F1132 ◽  
Author(s):  
Xueqin Cao ◽  
Qiongqiong Yang ◽  
Jing Qin ◽  
Shili Zhao ◽  
Xiaoyan Li ◽  
...  

The ubiquitous vacuolar H+-ATPase (V-ATPase), a multisubunit proton pump, is essential for intraorganellar acidification. Here, we hypothesized that V-ATPase is involved in the pathogenesis of kidney tubulointerstitial fibrosis. We first examined its expression in the rat unilateral ureteral obstruction (UUO) model of kidney fibrosis and transforming growth factor (TGF)-β1-mediated epithelial-to-mesenchymal transition (EMT) in rat proximal tubular epithelial cells (NRK52E). Immunofluorescence experiments showed that UUO resulted in significant upregulation of V-ATPase subunits (B2, E, and c) and α-smooth muscle actin (α-SMA) in areas of tubulointerstitial injury. We further observed that TGF-β1 (10 ng/ml) treatment resulted in EMT of NRK52E (upregulation of α-SMA and downregulation of E-cadherin) in a time-dependent manner and significant upregulation of V-ATPase B2 and c subunits after 48 h and the E subunit after 24 h, by real-time PCR and immunoblot analyses. The ATP hydrolysis activity tested by an ATP/NADH-coupled assay was increased after 48-h TGF-β1 treatment. Using intracellular pH measurements with the SNARF-4F indicator, Na+-independent pH recovery was significantly faster after an NH4Cl pulse in 48-h TGF-β1-treated cells than controls. Furthermore, the V-ATPase inhibitor bafilomycin A1 partially protected the cells from EMT. TGF-β1 induced an increase in the cell surface expression of the B2 subunit, and small interfering RNA-mediated B2 subunit knockdown partially reduced the V-ATPase activity and attenuated EMT induced by TGF-β1. Together, these findings show that V-ATPase may promote EMT and chronic tubulointerstitial fibrosis due to increasing its activity by either overexpression or redistribution of its subunits.


2013 ◽  
Vol 304 (8) ◽  
pp. F1054-F1065 ◽  
Author(s):  
Punithavathi Ranganathan ◽  
Calpurnia Jayakumar ◽  
Ganesan Ramesh

Acute kidney injury-induced organ fibrosis is recognized as a major risk factor for the development of chronic kidney disease, which remains one of the leading causes of death in the developed world. However, knowledge on molecules that may suppress the fibrogenic response after injury is lacking. In ischemic models of acute kidney injury, we demonstrate a new function of netrin-1 in regulating interstitial fibrosis. Acute injury was promptly followed by a rise in serum creatinine in both wild-type and netrin-1 transgenic animals. However, the wild-type showed a slow recovery of kidney function compared with netrin-1 transgenic animals and reached baseline by 3 wk. Histological examination showed increased infiltration of interstitial macrophages, extensive fibrosis, reduction of capillary density, and glomerulosclerosis. Collagen IV and α-smooth muscle actin expression was absent in sham-operated kidneys; however, their expression was significantly increased at 2 wk and peaked at 3 wk after reperfusion. These changes were reduced in the transgenic mouse kidney, which overexpresses netrin-1 in proximal tubular epithelial cells. Fibrosis was associated with increased expression of IL-6 and extensive and chronic activation of STAT3. Administration of IL-6 exacerbated fibrosis in vivo in wild-type, but not in netrin-1 transgenic mice kidney and increased collagen I expression and STAT3 activation in vitro in renal epithelial cells subjected to hypoxia-reoxygenation, which was suppressed by netrin-1. Our data suggest that proximal tubular epithelial cells may play a prominent role in interstitial fibrosis and that netrin-1 could be a useful therapeutic agent for treating kidney fibrosis.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yun Liu ◽  
Sujun Zuo ◽  
Xiaoyan Li ◽  
Jinjin Fan ◽  
Xueqin Cao ◽  
...  

Abstract To investigate the levels of (Pro) renin receptor [(P) RR], α-smooth muscle actin (α-SMA), fibronectin (FN), and vacuolar H+-ATPase (V-ATPase) subunits (B2, E, and c) in rat unilateral ureteral obstruction (UUO) models and rat proximal tubular epithelial cells (NRK-52E) treated with prorenin to elucidate the role of V-ATPase in these processes by activating the (P) RR. UUO significantly upregulated (P) RR, V-ATPase subunits, α-SMA and FN expression in tubulointerstitium or tubular epithelial cells. A marked colocalization of (P) RR and the B2 subunit was also observed. Prorenin treatment upregulated α-SMA, FN, (P) RR, and V-ATPase subunits and activity in NRK52E cell in a dose- and time-dependent manner. The V-ATPase inhibitor bafilomycin A1 partially blocked prorenin-induced (P) RR, FN, and α-SMA expression. Co-immunoprecipitate and immunofluorescence results demonstrated that the V-ATPase B2 subunit bound to the (P) RR, which was upregulated after prorenin stimulation. Either siRNA-mediated (P) RR or B2 subunit knockdown partially reduced V-ATPase activity and attenuated prorenin-induced FN and α-SMA expression. From the data we can assume that activation of (P) RR and V-ATPase may play an important role in tubulointerstitial fibrosis with possible involvement of interaction of V-ATPase B2 subunit and (P)RR.


Sign in / Sign up

Export Citation Format

Share Document