scholarly journals Eco-geographic Study of Mahaleb (Prunus Mahaleb. L) in the Middle and Northern Parts of the Eastern Mediterranean

Author(s):  
Hussam Hag Husein ◽  
Mahasen Tawaklna ◽  
Rupert Bäumler ◽  
Quoc Bao Pham

Abstract Background: Mahaleb still exists in most of the eastern Mediterranean forests associated with Cilician fir (Abies cilicica) and Lebanon cedar (Cedrus libani). However, there is an importance of conservation of its germplasm in hereditary banks due to their degradation in natural habitats, as well as there is growing interest in expanding Mahaleb cultivation due to its low requirements and endurance of harsh environments.Methods: The study used the approaches of the autecology concepts to study Mahaleb in situ. The field surveys have been conducted on an investigated homogeneous area of about 100m2 to 400m2 as a (relevé area).Results: Mahaleb occurs in its habitat in isolated individuals form and fragile structures of populations that were largely believed to have been in clumped or linear populations. The spatial distribution is restricted to small isolated zones in half-open, treeless or rocky outcrops areas of deciduous forests or rugged areas of barren mountains. The root sprouting seems to be the dominant mode of recruitment. However, all sites showed missing age classes that may indicate human infringement or the failure of recruitment in some years. The spatial distribution showed that Mahaleb exists in different environmental and climatic conditions regarding soil, landscape, rainfall, temperature. This can be attributed to its possession of genetic capabilities that enable it to adapt to varying environmental conditions in addition to the presence of different genotypes or higher taxa such as subspecies or even it may reflect the differences of environmental resilience inside some species themselves.Conclusions: this reflecting Mahaleb's high ability to withstand environmental, thermal, and water stresses. Notable, strong, long roots were found at different depths of soils, some within the joints of the rocks, and this strengthens its role in protecting soil conservation. The geo-distribution of Mahaleb suggests different genotypes or higher taxa such as subspecies or even the differences of environmental resilience inside some species themselves.It is also necessary to predict new potential areas for growth Mahaleb in the eastern Mediterranean to increase production either by introducing its cultivation in unconventional areas or by enhancing its productivity in the areas currently cultivated, which appears to be an important issue soon.

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 309 ◽  
Author(s):  
Iván Franco-Manchón ◽  
Kauko Salo ◽  
Juan Oria-de-Rueda ◽  
José Bonet ◽  
Pablo Martín-Pinto

Natural forests and plantations of Pinus are ecologically and economically important worldwide, producing an array of goods and services, including the provision of non-wood forest products. Pinus species play an important role in Mediterranean and boreal forests. Although Pinus species seem to show an ecological adaptation to recurrent wildfires, a new era of mega fires is predicted, owing to climate changes associated with global warming. As a consequence, fungal communities, which are key players in forest ecosystems, could be strongly affected by these wildfires. The aim of this study was to observe the fungal community dynamics, and particularly the edible fungi, in maritime (Pinus pinaster Ait.), austrian pine (Pinus nigra J.F. Arnold), and scots pine (Pinus sylvestris L.) forests growing under wet Mediterranean, dry Mediterranean, and boreal climatic conditions, respectively, by comparing the mushrooms produced in severely burned Pinus forests in each area. Sporocarps were collected during the main sampling campaigns in non-burned plots, and in burned plots one year and five years after fire. A total of 182 taxa, belonging to 81 genera, were collected from the sampled plots, indicating a high level of fungal diversity in these pine forests, independent of the climatic conditions. The composition of the fungal communities was strongly affected by wildfire. Mycorrhizal taxa were impacted more severely by wildfire than the saprotrophic taxa, particularly in boreal forests—no mycorrhizal taxa were observed in the year following fire in boreal forests. Based on our observations, it seems that fungal communities of boreal P. sylvestris forests are not as adapted to high-intensity fires as the Mediterranean fungal communities of P. nigra and P. pinaster forests. This will have an impact on reducing fungal diversity and potential incomes in rural economically depressed areas that depend on income from foraged edible fungi, one of the most important non-wood forest products.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 818
Author(s):  
Maria Royo-Navascues ◽  
Edurne Martinez del Castillo ◽  
Roberto Serrano-Notivoli ◽  
Ernesto Tejedor ◽  
Klemen Novak ◽  
...  

Understanding the influence of the current climate on the distribution, composition, and carbon storage capacity of Mediterranean tree species is key to determining future pathways under a warmer and drier climate scenario. Here, we evaluated the influence of biotic and environmental factors on earlywood (EW) and latewood (LW) growth in Aleppo pine (Pinus halepensis Mill.). Our investigation was based on a dense dendrochronological network (71 sites), which covered the entire distribution area of the species in the Iberian Peninsula (around 119.652 km2), and a high-resolution climate dataset of the Western Mediterranean area. We used generalized linear-mixed models to determine the spatial and temporal variations of EW and LW across the species distribution. Our results showed an intense but differentiated climatic influence on both EW and LW growth components. The climatic influence explained significant variations across the environmental gradients in the study area, which suggested an important adaptation through phenotypic plasticity and local adaptation to varying climatic conditions. In addition, we detected a clear spatial trade-off between efficiency and safety strategy in the growth patterns across the species distribution. Additionally, in more productive areas, the trees presented a higher proportion of EW (more efficient to water transport), while, in more xeric conditions, the LW proportion increased (more safety to avoid embolisms), implying an adaptation to more frequent drought episodes and a higher capacity of carbon depletion. We therefore concluded that Mediterranean forests adapted to dryer conditions might be more efficient as carbon reservoirs than forests growing in wetter areas. Finally, we advocated for the need to consider wood density (EW/LW proportion) when modeling current and future forest carbon sequestrations.


2021 ◽  
pp. 1-12
Author(s):  
Zalmen Henkin

Abstract Encroachment of woody plants into grasslands and subsequent brush management are among the most prominent changes occurring in arid and semiarid ecosystems over the past century. The reduced number of farms, the abandonment of marginal land and the decline of traditional farming practices have led to encroachment of the woody and shrubby components into grasslands. This phenomenon, specifically in the Mediterranean region, which is followed by a reduction in herbage production, biodiversity and increased fire risk, is generally considered an undesirable process. Sarcopoterium spinosum has had great success in the eastern Mediterranean as a colonizer and dominant bush species on a wide variety of sites and climatic conditions. In the Mediterranean dehesa, the high magnitude and intensity of shrub encroachment effects on pastures and on tree production were shown to be dependent on temporal variation. Accordingly, there are attempts to transform shrublands into grassland-woodland matrices by using different techniques. The main management interventions that are commonly used include grazing, woodcutting, shrub control with herbicides or by mechanical means, amelioration of plant mineral deficits in the soil, and fire. However, the effects of these various treatments on the shrubs under diverse environmental conditions were found to be largely context-specific. As such, the most efficient option for suppressing encroachment of shrubs is combining different interventions. Appropriate management of grazing, periodic control of the shrub component, and occasional soil nutrient amelioration can lead to the development of attractive open woodland with a productive herbaceous understory that provides a wider range of ecological services.


2012 ◽  
Vol 13 (1) ◽  
pp. 12 ◽  
Author(s):  
H. EL LAKHRACH ◽  
A. HATTOUR ◽  
O. JARBOUI ◽  
K. ELHASNI ◽  
A.A. RAMOS-ESPLA

The aim of this paper is to bring to light the knowledge of marine diversity of invertebrates in Gabes gulf. The spatial distribution of the megabenthic fauna community in Gabes gulf (Tunisia, Eastern Mediterranean Sea), together with the bottom type and vegetation cover, were studied. The abundance of the megabenthic fauna was represented by eight groups: Echinodermata (38%), Crustacea (21%), Tunicata (19%), Mollusca (13%), Porifera (4%), Cnidaria (3%), Bryozoa, and Annelida (2%). It was spatially more concentrated in the coast area of the gulf than in the offshore waters. This area, especially, in Southern Kerkennah, North-est of Gabes and North-east of Djerba appeared to be in a good ecological condition  hosting a variety of species like the paguridsPaguristes eremita and Pagurus cuanensis, the brachyura Medorippe lanata, Inachus doresttensis, the Gastropoda Hexaplex trunculus, Bolinus brandaris, Aporrhais pespelecani, andErosaria turdus, the Bivalvia Fulvia fragilis, the Echinoidea Psammechinus microtuberculatus, Holothuria polii,Ophiothrix fragilis and Antedon mediterranea, and the AscidiaceaAplidium cf. conicum, Didemnum spp, and Microcosmus exasperatus.The species’ compositions of the megabentic fauna community showed clearly that the spatial analysis represented the differences between the community of these two regions (inshore waters and offshore waters). These differences were closely related to peculiar characters of the fauna and biotopes (depth, bottom type and vegetation cover community). The results of the present study should be considered as a necessary starting point for a further analysis of priceless benthic fauna contribution to the marine environment and its organisms.


Author(s):  
Alex Baumel ◽  
Gonzalo Nieto Feliner ◽  
Frederic Medail ◽  
Stefano La Malfa ◽  
Mario Diguardo ◽  
...  

Intense research efforts on phylogeography over the last two decades uncovered major biogeographical trends and renewed our understandings of plant domestication in the Mediterranean. We aim to investigate the evolutionary history and the origin of domestication of the carob tree that has been cultivated for millennia for food and fodder. We used >1000 microsatellite genotypes to identify carob evolutionary units (CEUs) based on genetic diversity structure and geography. We investigated genome-wide diversity and evolutionary patterns of the CEUs with 3557 SNPs generated by restriction-site associated DNA sequencing (RADseq). The 56 populations sampled across the Mediterranean basin, classified as natural, semi-natural or cultivated, were examined. Although, RADseq data are consistent with previous studies identifying a strong West-to-East genetic structure and considerable admixture in some geographic parts, we reconstructed a new phylogeographic scenario with two migration routes occurring from a single refugium likely located in South-Western Morocco. Our results do not favour the regionally bound or single origin of domestication. Indeed, our findings support a cultivation model of locally selected wild genotypes, albeit punctuated by long-distance westward dispersals of domesticated varieties by humans, concomitant with major cultural waves by Romans and Arabs in the regions of dispersal. Ex-situ efforts to preserve carob genetic resources should prioritize accessions from both western and eastern populations, with emphasis on the most differentiated CEUs situated in South-Western Morocco, South Spain and Eastern Mediterranean. Our study underscores the relevance of natural and seminatural habitats of Mediterranean forests and their refugia in the conservation efforts of tree crops.


Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 298 ◽  
Author(s):  
Chiara Calligaris ◽  
Lisa Ghezzi ◽  
Riccardo Petrini ◽  
Davide Lenaz ◽  
Luca Zini

The present paper deals with a field experiments on evaporite rock samples and groundwater investigations in the Quinis test site, a hamlet of the Enemonzo municipality in NE Italy, were sinkholes occurred in the past and are still occurring causing severe damage to the existing infrastructures. The area is characterised by a Carnian evaporitic bedrock made of gypsum and anhydrite mantled by alluvial and colluvial deposits. In order to evaluate the loss of weight and volume of the subcropping evaporites as responsible for sinkholes, a field-experiment was carried out. Inside seven piezometers, at different depths, evaporitic rock samples were exposed to the naturally occurring variable climatic conditions such as degree of humidity, different air flow and hydrodynamic. The rock samples were installed at the beginning of April 2017 in the dry sections of piezometric tubes, in the vadose zone and in the phreatic zone. Data related to water level fluctuations were recorded by using data-logger devices and highlight significant changes in the water table. After 13 months of data recording (May 2018), rock samples were removed, reweighted and the volume loss measured. In addition, water from piezometer-experiment, representative of the groundwater circulation, were collected at different depths. The obtained results indicate that rock sample reduction is dependent on the hydrological regime and water chemistry and not on the number of days during which the samples remained submersed. In particular, the water geochemistry highlights the possible role in gypsum/anhydrite dissolution due to NaCl water admixing in a complex scenario. In additional, the geochemical data highlight the occurrence of some potentially toxic elements (As, Fe, Mn) at concentrations of concern in some water. This approach represents a novel contribution in the study of karst hazard in evaporites adding a tile to the knowledge of the fast evolutionary processes which cause sinkhole formation.


Sign in / Sign up

Export Citation Format

Share Document