Deep Learning Based Signal Processing For Multiuser OFDM Systems

Author(s):  
Youjie Ye ◽  
Yunfei Chen

Abstract Deep learning (DL) methods have been proved effective in improving the performance of channel estimation and signal detection. In this work, we propose three DL algorithms: fully connected deep neural network (FCDNN), convolutional neural networks (CNN), and long short-term memory (LSTM) neural networks for signal processing in multiuser orthogonal frequency-division multiplexing (OFDM) communications systems. The bit error rates (BERs) of these DL methods are compared with the conventional linear minimum mean squared error (LMMSE) detector. Additionally, the relationships between the BER and signal-to-interference ratio (SIR), signal-to-noise ratio (SNR), the number of interfering users (NoI) and modulation type are investigated. Numerical results show that all DL methods outperform LMMSE under different multiuser interference conditions, and FCDNN and LSTM give the best and robust anti-multiuser performance. This work shows that FCDNN and LSTM network have strong anti-interference ability and are useful in multiuser OFDM systems.

2021 ◽  
Author(s):  
Jonas Koch ◽  
Ken Chan ◽  
Christian G. Schaeffer ◽  
Stephan Pachnicke

A minimum mean squared error (MMSE) equalizer is a way to effectively increase transmission performance for nonlinear Fourier transform (NFT) based communication systems. Other equalization schemes, based on nonlinear equalizer approaches or neural networks, are interesting for NFT transmission due to their ability to deal with nonlinear correlations of the NFTs’ eigenvalues and their coefficients. We experimentally investigated single- and dual-polarization long haul transmission with several modulation schemes and compared different equalization techniques including joint detection equalization and the use of neural networks. We observed that joint detection equalization provides range increases for shorter transmission distances while having low numeric complexity. We could further achieve bit error rates (BER) under HD-FEC for significant longer transmission distances in comparison to no equalization with different equalizers.<div><br></div><div>Manuscript received August 6, 2020; revised November 2, 2020; accepted December 8, 2020. Date of publication December 16, 2020;<br></div>


2021 ◽  
Author(s):  
Jonas Koch ◽  
Ken Chan ◽  
Christian G. Schaeffer ◽  
Stephan Pachnicke

A minimum mean squared error (MMSE) equalizer is a way to effectively increase transmission performance for nonlinear Fourier transform (NFT) based communication systems. Other equalization schemes, based on nonlinear equalizer approaches or neural networks, are interesting for NFT transmission due to their ability to deal with nonlinear correlations of the NFTs’ eigenvalues and their coefficients. We experimentally investigated single- and dual-polarization long haul transmission with several modulation schemes and compared different equalization techniques including joint detection equalization and the use of neural networks. We observed that joint detection equalization provides range increases for shorter transmission distances while having low numeric complexity. We could further achieve bit error rates (BER) under HD-FEC for significant longer transmission distances in comparison to no equalization with different equalizers.<div><br></div><div>Manuscript received August 6, 2020; revised November 2, 2020; accepted December 8, 2020. Date of publication December 16, 2020;<br></div>


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Author(s):  
Tahani Aljohani ◽  
Alexandra I. Cristea

Massive Open Online Courses (MOOCs) have become universal learning resources, and the COVID-19 pandemic is rendering these platforms even more necessary. In this paper, we seek to improve Learner Profiling (LP), i.e. estimating the demographic characteristics of learners in MOOC platforms. We have focused on examining models which show promise elsewhere, but were never examined in the LP area (deep learning models) based on effective textual representations. As LP characteristics, we predict here the employment status of learners. We compare sequential and parallel ensemble deep learning architectures based on Convolutional Neural Networks and Recurrent Neural Networks, obtaining an average high accuracy of 96.3% for our best method. Next, we predict the gender of learners based on syntactic knowledge from the text. We compare different tree-structured Long-Short-Term Memory models (as state-of-the-art candidates) and provide our novel version of a Bi-directional composition function for existing architectures. In addition, we evaluate 18 different combinations of word-level encoding and sentence-level encoding functions. Based on these results, we show that our Bi-directional model outperforms all other models and the highest accuracy result among our models is the one based on the combination of FeedForward Neural Network and the Stack-augmented Parser-Interpreter Neural Network (82.60% prediction accuracy). We argue that our prediction models recommended for both demographics characteristics examined in this study can achieve high accuracy. This is additionally also the first time a sound methodological approach toward improving accuracy for learner demographics classification on MOOCs was proposed.


2020 ◽  
Vol 3 (1) ◽  
pp. 445-454
Author(s):  
Celal Buğra Kaya ◽  
Alperen Yılmaz ◽  
Gizem Nur Uzun ◽  
Zeynep Hilal Kilimci

Pattern classification is related with the automatic finding of regularities in dataset through the utilization of various learning techniques. Thus, the classification of the objects into a set of categories or classes is provided. This study is undertaken to evaluate deep learning methodologies to the classification of stock patterns. In order to classify patterns that are obtained from stock charts, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory networks (LSTMs) are employed. To demonstrate the efficiency of proposed model in categorizing patterns, hand-crafted image dataset is constructed from stock charts in Istanbul Stock Exchange and NASDAQ Stock Exchange. Experimental results show that the usage of convolutional neural networks exhibits superior classification success in recognizing patterns compared to the other deep learning methodologies.


2021 ◽  
Vol 2 ◽  
Author(s):  
Anderson Antonio Carvalho Alves ◽  
Lucas Tassoni Andrietta ◽  
Rafael Zinni Lopes ◽  
Fernando Oliveira Bussiman ◽  
Fabyano Fonseca e Silva ◽  
...  

This study focused on assessing the usefulness of using audio signal processing in the gaited horse industry. A total of 196 short-time audio files (4 s) were collected from video recordings of Brazilian gaited horses. These files were converted into waveform signals (196 samples by 80,000 columns) and divided into training (N = 164) and validation (N = 32) datasets. Twelve single-valued audio features were initially extracted to summarize the training data according to the gait patterns (Marcha Batida—MB and Marcha Picada—MP). After preliminary analyses, high-dimensional arrays of the Mel Frequency Cepstral Coefficients (MFCC), Onset Strength (OS), and Tempogram (TEMP) were extracted and used as input information in the classification algorithms. A principal component analysis (PCA) was performed using the 12 single-valued features set and each audio-feature dataset—AFD (MFCC, OS, and TEMP) for prior data visualization. Machine learning (random forest, RF; support vector machine, SVM) and deep learning (multilayer perceptron neural networks, MLP; convolution neural networks, CNN) algorithms were used to classify the gait types. A five-fold cross-validation scheme with 10 repetitions was employed for assessing the models' predictive performance. The classification performance across models and AFD was also validated with independent observations. The models and AFD were compared based on the classification accuracy (ACC), specificity (SPEC), sensitivity (SEN), and area under the curve (AUC). In the logistic regression analysis, five out of the 12 audio features extracted were significant (p &lt; 0.05) between the gait types. ACC averages ranged from 0.806 to 0.932 for MFCC, from 0.758 to 0.948 for OS and, from 0.936 to 0.968 for TEMP. Overall, the TEMP dataset provided the best classification accuracies for all models. The most suitable method for audio-based horse gait pattern classification was CNN. Both cross and independent validation schemes confirmed that high values of ACC, SPEC, SEN, and AUC are expected for yet-to-be-observed labels, except for MFCC-based models, in which clear overfitting was observed. Using audio-generated data for describing gait phenotypes in Brazilian horses is a promising approach, as the two gait patterns were correctly distinguished. The highest classification performance was achieved by combining CNN and the rhythmic-descriptive AFD.


2021 ◽  
Vol 20 (5s) ◽  
pp. 1-25
Author(s):  
Elbruz Ozen ◽  
Alex Orailoglu

As deep learning algorithms are widely adopted, an increasing number of them are positioned in embedded application domains with strict reliability constraints. The expenditure of significant resources to satisfy performance requirements in deep neural network accelerators has thinned out the margins for delivering safety in embedded deep learning applications, thus precluding the adoption of conventional fault tolerance methods. The potential of exploiting the inherent resilience characteristics of deep neural networks remains though unexplored, offering a promising low-cost path towards safety in embedded deep learning applications. This work demonstrates the possibility of such exploitation by juxtaposing the reduction of the vulnerability surface through the proper design of the quantization schemes with shaping the parameter distributions at each layer through the guidance offered by appropriate training methods, thus delivering deep neural networks of high resilience merely through algorithmic modifications. Unequaled error resilience characteristics can be thus injected into safety-critical deep learning applications to tolerate bit error rates of up to at absolutely zero hardware, energy, and performance costs while improving the error-free model accuracy even further.


2021 ◽  
Vol 13 (21) ◽  
pp. 11631
Author(s):  
Der-Jang Chi ◽  
Chien-Chou Chu

“Going concern” is a professional term in the domain of accounting and auditing. The issuance of appropriate audit opinions by certified public accountants (CPAs) and auditors is critical to companies as a going concern, as misjudgment and/or failure to identify the probability of bankruptcy can cause heavy losses to stakeholders and affect corporate sustainability. In the era of artificial intelligence (AI), deep learning algorithms are widely used by practitioners, and academic research is also gradually embarking on projects in various domains. However, the use of deep learning algorithms in the prediction of going concern remains limited. In contrast to those in the literature, this study uses long short-term memory (LSTM) and gated recurrent unit (GRU) for learning and training, in order to construct effective and highly accurate going-concern prediction models. The sample pool consists of the Taiwan Stock Exchange Corporation (TWSE) and the Taipei Exchange (TPEx) listed companies in 2004–2019, including 86 companies with going concern doubt and 172 companies without going concern doubt. In other words, 258 companies in total are sampled. There are 20 research variables, comprising 16 financial variables and 4 non-financial variables. The results are based on performance indicators such as accuracy, precision, recall/sensitivity, specificity, F1-scores, and Type I and Type II error rates, and both the LSTM and GRU models perform well. As far as accuracy is concerned, the LSTM model reports 96.15% accuracy while GRU shows 94.23% accuracy.


Author(s):  
Bemnet Wondimagegnehu Mersha ◽  
David N. Jansen ◽  
Hongbin Ma

AbstractThe angle of attack (AOA) is one of the critical parameters in a fixed-wing aircraft because all aerodynamic forces are functions of the AOA. Most methods for estimation of the AOA do not provide information on the method’s performance in the presence of noise, faulty total velocity measurement, and faulty pitch rate measurement. This paper investigates data-driven modeling of the F-16 fighter jet and AOA prediction in flight conditions with faulty sensor measurements using recurrent neural networks (RNNs). The F-16 fighter jet is modeled in several architectures: simpleRNN (sRNN), long-short-term memory (LSTM), gated recurrent unit (GRU), and the combinations LSTM-GRU, sRNN-GRU, and sRNN-LSTM. The developed models are tested by their performance to predict the AOA of the F-16 fighter jet in flight conditions with faulty sensor measurements: faulty total velocity measurement, faulty pitch rate and total velocity measurement, and faulty AOA measurement. We show the model obtained using sRNN trained with the adaptive momentum estimation algorithm (Adam) produces more exact predictions during faulty total velocity measurement and faulty total velocity and pitch rate measurement but fails to perform well during faulty AOA measurement. The sRNN-GRU combinations with the GRU layer closer to the output layer performed better than all the other networks. When using this architecture, the correlation and mean squared error (MSE) between the true (real) value and the predicted value during faulty AOA measurement increased by 0.12 correlation value and the MSE decreased by 4.3 degrees if one uses only sRNN. In the sRNN-GRU combined architecture, moving the GRU closer to the output layer produced a model with better predicted values.


2017 ◽  
Vol 3 (1) ◽  
pp. 10
Author(s):  
Debby E. Sondakh

Classification has been considered as an important tool utilized for the extraction of useful information from healthcare dataset. It may be applied for recognition of disease over symptoms. This paper aims to compare and evaluate different approaches of neural networks classification algorithms for healthcare datasets. The algorithms considered here are Multilayer Perceptron, Radial Basis Function, and Voted Perceptron which are tested based on resulted classifiers accuracy, precision, mean absolute error and root mean squared error rates, and classifier training time. All the algorithms are applied for five multivariate healthcare datasets, Echocardiogram, SPECT Heart, Chronic Kidney Disease, Mammographic Mass, and EEG Eye State datasets. Among the three algorithms, this study concludes the best algorithm for the chosen datasets is Multilayer Perceptron. It achieves the highest for all performance parameters tested. It can produce high accuracy classifier model with low error rate, but suffer in training time especially of large dataset. Voted Perceptron performance is the lowest in all parameters tested. For further research, an investigation may be conducted to analyze whether the number of hidden layer in Multilayer Perceptron’s architecture has a significant impact on the training time.


Sign in / Sign up

Export Citation Format

Share Document