scholarly journals Causal and Putative Pathogenic Mutations Identified in 38.6% of Children with Primary SRNS in South Africa

Author(s):  
Louansha Nandlal ◽  
Cheryl A. Winkler ◽  
Rajendra Bhimma ◽  
Sungkweon Cho ◽  
George W. Nelson ◽  
...  

Abstract The aim was to identify causal mutations in genes implicated in steroid resistant nephrotic syndrome (SRNS) within a South African population. We enrolled 119 children with primary NS; 71 SRNS and 48 steroid-sensitive NS. All children with SRNS underwent kidney biopsy. We first genotyped the NPHS2 gene for the p.V260E variant in all NS cases (n= 119) and controls (n= 219). To further identify additional variants, we performed whole-exome sequencing and interrogated ten genes (NPHS1, NPHS2, WT1, LAMB2, ACTN4, TRPC6, INF2, CD2AP, PLCE1, MYO1E) implicated in SRNS/FSGS in 56 SRNS cases and 29 controls; we also performed exome sequencing on two patients carrying the NPHS2 p.V260E mutation as positive controls. The overall detection rate of pathogenic mutations in children with SRNS was 27/70(38.57%): 15(21.43%) carried the NPHS2 p.V260E mutation and 12(17.14%) carried a pathogenic mutation in the heterozygous state in INF2 (n=8), CD2AP (n=3) or TRPC6 (n=1) genes. NPHS2 p.V260E homozygosity was specifically associated with biopsy-proven FSGS, accounting for 23.81% of Black children (15 of 63) with SR-FSGS. No causal mutations were identified in NPHS1, WT1, LAMB2, PLCE1, MYO1E and ACTN4. We report four novel variants in INF2, PLCE1, ACTN4 and TRPC6.Conclusion: The NPHS2 p.V260E mutation is a prevalent cause of SR-FSGS among Black South African children occurring in 23.81% of children with SRNS. Screening all Black African children presenting with NS for NPHS2 p.V260E will provide a precision diagnosis of SR-FSGS and inform clinical management.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Somayeh Khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh-Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods. Methods This study was a report on a research study of two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects. Conclusion In this study, whole exome sequencing were used as a first approach strategy to identify the two novel variants in MYO15A in two Iranian families with ARNSHL.


2004 ◽  
Vol 1 (4) ◽  
pp. 261-271 ◽  
Author(s):  
Timothy D Noakes ◽  
Yolande XR Harley ◽  
Andrew N Bosch ◽  
Frank E Marino ◽  
Alan St Clair Gibson ◽  
...  

AbstractPhysiological studies of elite and sub-elite black South African runners show that these athletes are typically about 10–12 kg lighter than white athletes and that they are able to sustain higher exercise intensities for longer than white runners. Such superior performance is not a result of higher V O2max values and hence cannot be due to superior oxygen delivery to the active muscles during maximal exercise, as is predicted by the traditional cardiovascular/anaerobic/catastrophic models of exercise physiology. A marginally superior running economy is also unlikely to be a crucial determinant in explaining this apparent superiority. However, black athletes are able to sustain lower rectal and thigh, but higher mean skin, temperatures during exercise. Furthermore, when exercising in the heat, lighter black athletes are able to maintain higher running speeds than are larger white runners matched for running performance in cool environmental conditions. According to the contrasting theory that the body acts as a complex system during exercise, the superiority of black African athletes should be sought in an enhanced capacity to maintain homeostasis in all their inter-dependent biological systems despite running at higher relative exercise intensities and metabolic rates. In this case, any explanation for the success of East African runners will be found in the way in which their innate physiology, training, environment, expectations and genes influence the function of those parts of their subconscious (and conscious) brains that appear to regulate the protection of homeostasis during exercise as part of an integrative, complex biological system.


2018 ◽  
Vol 141 (2) ◽  
pp. AB186
Author(s):  
Kylie N. Jungles ◽  
Michael Levin ◽  
Maresa Botha ◽  
Betty Andy-Nweye ◽  
Sukruthi Jois ◽  
...  

2017 ◽  
Vol 97 (1) ◽  
pp. 49-59 ◽  
Author(s):  
N. Dinckan ◽  
R. Du ◽  
L.E. Petty ◽  
Z. Coban-Akdemir ◽  
S.N. Jhangiani ◽  
...  

Tooth agenesis is a common craniofacial abnormality in humans and represents failure to develop 1 or more permanent teeth. Tooth agenesis is complex, and variations in about a dozen genes have been reported as contributing to the etiology. Here, we combined whole-exome sequencing, array-based genotyping, and linkage analysis to identify putative pathogenic variants in candidate disease genes for tooth agenesis in 10 multiplex Turkish families. Novel homozygous and heterozygous variants in LRP6, DKK1, LAMA3, and COL17A1 genes, as well as known variants in WNT10A, were identified as likely pathogenic in isolated tooth agenesis. Novel variants in KREMEN1 were identified as likely pathogenic in 2 families with suspected syndromic tooth agenesis. Variants in more than 1 gene were identified segregating with tooth agenesis in 2 families, suggesting oligogenic inheritance. Structural modeling of missense variants suggests deleterious effects to the encoded proteins. Functional analysis of an indel variant (c.3607+3_6del) in LRP6 suggested that the predicted resulting mRNA is subject to nonsense-mediated decay. Our results support a major role for WNT pathways genes in the etiology of tooth agenesis while revealing new candidate genes. Moreover, oligogenic cosegregation was suggestive for complex inheritance and potentially complex gene product interactions during development, contributing to improved understanding of the genetic etiology of familial tooth agenesis.


2021 ◽  
Author(s):  
Amein Kadhem AlAli ◽  
Abdulrahman Al-Enazi ◽  
Ahmed Ammar ◽  
Mahmoud Hajj ◽  
Cyril Cyrus ◽  
...  

Abstract Background Epilepsy, a serious chronic neurological condition effecting up to 100 million people globally, has clear genetic underpinnings including common and rare variants. In Saudi Arabia the prevalence of epilepsy is high and caused mainly by perinatal and genetic factors. No whole-exome sequencing (WES) studies have been performed to date in Saudi Arabian Epilepsy cohorts. This offers a unique opportunity for the discovery of rare genetic variants impacting this disease as there is a high rate of consanguinity amongst large tribal pedigrees. Results We performed WES on 144 individuals diagnosed with epilepsy, to interrogate known Epilepsy related genes for known and functional novel variants. We also used an American College of Medical Genetics (ACMG) guideline based variant prioritization approach in an attempt to discover putative causative variants. We identified a 32 potentially causative pathogenic variants across 30 different genes in 44/144 (30%) of these Saudi Epilepsy individuals. We also identified 232 variants of unknown significance (VUS) across 101 different genes in 133/144 (92%) subjects. Strong enrichment of variants of likely pathogenicity were observed in previously described epilepsy-associated loci, and a number of putative pathogenic variants in novel loci are also observed. Conclusion Several putative pathogenic variants known to be epilepsy-related loci were identified for the first time in our population, in addition to several potential new loci have been identified which may be prioritized for further investigation.


2019 ◽  
Vol 15 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Samuela Landini ◽  
Benedetta Mazzinghi ◽  
Francesca Becherucci ◽  
Marco Allinovi ◽  
Aldesia Provenzano ◽  
...  

Background and objectivesNephrotic syndrome is a typical presentation of genetic podocytopathies but occasionally other genetic nephropathies can present as clinically indistinguishable phenocopies. We hypothesized that extended genetic testing followed by reverse phenotyping would increase the diagnostic rate for these patients.Design, setting, participants, & measurementsAll patients diagnosed with nephrotic syndrome and referred to our center between 2000 and 2018 were assessed in this retrospective study. When indicated, whole-exome sequencing and in silico filtering of 298 genes related to CKD were combined with subsequent reverse phenotyping in patients and families. Pathogenic variants were defined according to current guidelines of the American College of Medical Genetics.ResultsA total of 111 patients (64 steroid-resistant and 47 steroid-sensitive) were included in the study. Not a single pathogenic variant was detected in the steroid-sensitive group. Overall, 30% (19 out of 64) of steroid-resistant patients had pathogenic variants in podocytopathy genes, whereas a substantial number of variants were identified in other genes, not commonly associated with isolated nephrotic syndrome. Reverse phenotyping, on the basis of a personalized diagnostic workflow, permitted to identify previously unrecognized clinical signs of an unexpected underlying genetic nephropathy in a further 28% (18 out of 64) of patients. These patients showed similar multidrug resistance, but different long-term outcome, when compared with genetic podocytopathies.ConclusionsReverse phenotyping increased the diagnostic accuracy in patients referred with the diagnosis of steroid-resistant nephrotic syndrome.


Sign in / Sign up

Export Citation Format

Share Document