scholarly journals Superlative Photoelectrochemical Properties of 3D MgCr- LDH Nanoflowers influencing towards Photoinduced Water Splitting Reactions

Author(s):  
susanginee nayak ◽  
Kulamani M. Parida

Abstract Layered double hydroxides (LDHs) are competent photocatalysts for water splitting reactions, vital to produce solar fuels, but their restricted available reactive sites, slow mass and charge transfer, are yet remain a challenge. To surmount these lacunas, Nanoflowers-like three-dimensional (3D) open structure of MgCr-LDH have been designed in a substrate-free path by one-step formamide assisted hydrothermal treatment followed by visible light irradiation and utilized as efficient photocatalysts for the H2 and O2 production. The structural, morphological, optical and photoelectrochemical (PEC) properties of the MgCr-LDH nanoflowers were extensively examined, by various physico-chemical characterization techniques. Moreover, the well-designed 3D MgCr-LDH nanoflowers with open structure were formed by a stacking of numerous 2D nanosheets, which inherently triggered with magnificent PEC properties, including high current density of 6.9 mA/cm2, smallest arc of the Nyquist plot (59.1 Ω cm−2) with photostability of 6000 s thereby enhancing the photocatalytic water splitting activity along. Moreover such a perfectly self-stacked 2D nanosheet in 3D MgCr-LDH possess defect sites as enriched 50% oxygen vacancy resulting a good contact surface within the structure for effective light absorption and easy electron and hole separation, facilitates the adsorption of protons and intermediate of water oxidation. Further, the doped Cr3+ pull up electrons from water oxidation intermediates, thereby displaying superior photocatalytic H2 and O2 production activity of 1315 µmol/h and 579 µmol/h, respectively. Favorable oxygen vacancy type defect surface with Cr3+ dopant in MgCr-LDH triggers significant PEC properties, which influences the easy charge transfer and separation mechanism and robustly enhance the photocatalytic performance of the nanoflower.

Nanoscale ◽  
2015 ◽  
Vol 7 (45) ◽  
pp. 19144-19151 ◽  
Author(s):  
Ju Hun Kim ◽  
Youn Jeong Jang ◽  
Jin Hyun Kim ◽  
Ji-Wook Jang ◽  
Sun Hee Choi ◽  
...  

A 1D ZnFe2O4 photoanode is treated under a hydrogen or vacuum atmosphere to improve the photoelectrochemical water oxidation activity up to 20 times. This post-treatment creates oxygen vacancies in the ZnFe2O4 lattice that serve as a source of electron donors and passivates surface trap sites, and as a result improves charge transfer.


2021 ◽  
Vol 378 ◽  
pp. 138147
Author(s):  
MengXian Lin ◽  
Fuqiang Shao ◽  
Shuting Weng ◽  
Shanshan Xiong ◽  
Shuai Liu ◽  
...  

2017 ◽  
Vol 19 (7) ◽  
pp. 4997-5003 ◽  
Author(s):  
Jin Feng ◽  
Guokui Liu ◽  
Shiling Yuan ◽  
Yuchen Ma

Charge transfer and separation mechanism in C–CHO/g-C3N4 under light irradiation through a two-step process (Route I) and direct excitation (Route II).


2018 ◽  
Vol 6 (48) ◽  
pp. 24686-24692 ◽  
Author(s):  
Zhiping Zeng ◽  
Tao Li ◽  
Yu-Bing Li ◽  
Xiao-Cheng Dai ◽  
Ming-Hui Huang ◽  
...  

Cascade charge transfer between graphene quantum dots and Ag nanocrystals in photoelectrochemical water splitting was finely regulated by layer-by-layer (LbL) assembly.


Author(s):  
Wanqing Fang ◽  
Ai Qin ◽  
Yimin Lin ◽  
Rongzi Xv ◽  
Li Fu

BiVO4 is one of the most attractive photoanode materials for photoelectrochemical water splitting. Herein, cobalt phosphate (CoPi) modified BiVO4 (BiVO4/CoPi) photoanode is prepared by electrodeposition. The physical and chemical characterization...


RSC Advances ◽  
2018 ◽  
Vol 8 (72) ◽  
pp. 41439-41444 ◽  
Author(s):  
Wenchao Jiang ◽  
Yi Jiang ◽  
Jing Tong ◽  
Qian Zhang ◽  
Siyuan Li ◽  
...  

Constructing heterojunctions by coupling dissimilar semiconductors is a promising approach to boost charge separation and charge transfer in photoelectrochemical (PEC) water splitting.


2015 ◽  
Vol 44 (8) ◽  
pp. 3856-3861 ◽  
Author(s):  
S. C. Yan ◽  
Z. G. Zou

Porous ZnGaNO microrods were synthesized by a single crystal internal decomposition route, and exhibited high performance in photoelectrochemical water splitting due to the high specific area and short charge transfer distance of the microstructure.


2020 ◽  
Vol 49 (3) ◽  
pp. 588-592 ◽  
Author(s):  
Fusheng Li ◽  
Ziqi Zhao ◽  
Hao Yang ◽  
Dinghua Zhou ◽  
Yilong Zhao ◽  
...  

A cobalt oxide catalyst prepared by a flame-assisted deposition method on the surface of FTO and hematite for electrochemical and photoelectrochemical water oxidation, respectively.


2020 ◽  
Vol 8 (40) ◽  
pp. 20963-20969 ◽  
Author(s):  
Wei Chen ◽  
Guo-Bo Huang ◽  
Hao Song ◽  
Jian Zhang

An efficient charge transfer channel for improving the photocatalytic water splitting activity and durability of CdS without sacrificial agents.


2020 ◽  
Author(s):  
Camilo A. Mesa ◽  
Ludmilla Steier ◽  
Benjamin Moss ◽  
Laia Francàs ◽  
James E. Thorne ◽  
...  

<p><i>Operando</i> spectroelectrochemical analysis is used to determine the water oxidation reaction kinetics for hematite photoanodes prepared using four different synthetic procedures. Whilst these photoanodes exhibit very different current / voltage performance, their underlying water oxidation kinetics are found to be almost invariant. Lower photoanode performance was found to correlate with the observation of optical signals indicative of charge accumulation in mid-gap oxygen vacancy states, indicating these states do not contribute directly to water oxidation.</p>


Sign in / Sign up

Export Citation Format

Share Document