scholarly journals Shake Table Tests of a Novel Low-rise Bolt-Assembled Precast Concrete Sandwich Wall Panel Structure

Author(s):  
Feng Xiong ◽  
Wen Chen ◽  
Qi Ge ◽  
Jiang Chen ◽  
Yang Lu

Abstract A novel low-rise bolt - assembled precast concrete sandwich wall panel structure for rural residential houses was proposed, in which the connections between wall and wall, and wall and floor were connected by high strength bolts and steel plates. The bolt joints can be easily installed and disassembled. They are replaceable to make the precast structure demountable and reassembled. All the components are connected together by the novel bolted connectors. This paper presents the shake-table tests of a full-scale two-story bolt-assembled precast concrete sandwich wall building. The results indicated that the proposed structural system had good seismic performance and remained in the elastic stage with no damage after 9-degree rare earthquake excitation for the Model-1. The Model-2 exhibited excellent capacity and performed satisfactorily under the excitation up to 0.8 g. Cracks were observed at the wall openings and the base of walls and columns, which was similar to that of a cast-in-situ structure. The damage statuses were mainly light damage and moderate damage. The bolt connection joints were not anti-seismic weak places and had good seismic performance. Equivalent base shear method is suitable for estimating the seismic demand of the proposed precast concrete sandwich wall panel structure.

2013 ◽  
Vol 594-595 ◽  
pp. 1020-1024 ◽  
Author(s):  
Mohd Faiz Md Fudzee ◽  
Nor Hayati Hamid

In this paper, the seismic performance of the insulated sandwich wall panel is studied. Two samples W1 and W2 of Insulated Sandwich Wall Panel (ISWP) were tested under in-plane lateral cyclic loading. The difference between W1 and W2 is the numbers of wall plug used in order to hold the specimen in standing parallel position. Four wall plugs used for W1 meanwhile eleven wall plugs used for W2. ISWP is placed axially on top of the foundation beam. The concrete block is slotted on top of the wall panel as load transfer from the roof. The aspect ratio of the specimen is Ar = H/B = 1.97 and slenderness ratio is λ = H/t = 36.92. The testing is conducted with small percent of drift which is 0.1% and continued with 0.2%. The drift was increased gradually about 0.2% until reach ±1.0%. Furthermore, the specimen was tested with an increment of ±0.2% drift until the specimens reach the strength capacity. The experimental results showed that for the first specimen, the wall panel behaves elastically up to 0.4% drift before yielding. Due to loading and unloading condition, the aluminium frame that used along the perimeter of the wall panel buckled at 1.2% drift. For the second specimen the wall panel behaves elastically up to 0.4% drift before yielding. Once 0.6% drift applied, crack started to appear at the connection joint between G.I channel and foundation beam. The analysis of the result from the graphs of hysteresis loop for both W1 and W2 were presented by considering the seismic parameter such as stiffness, ductility and equivalent viscous damping.


2021 ◽  
Vol 11 (6) ◽  
pp. 2688
Author(s):  
Shaochun Ma ◽  
Lianghui Li ◽  
Peng Bao

The research objective of this study was the seismic performance of double-row reinforced ceramsite concrete sandwich wall panels. The feasibility of upgrading a new wall panel from a non-load-bearing partition wall to a load-bearing seismic wall was examined by conducting cyclic load tests on five wall panel specimens. The test piece was a sandwich thermal insulation structure that could achieve a good protection distance between the thermal insulation material and the fire source so that the fire prevention problem could be solved. At the same time, the problem of easy fall-off of the insulation system was also solved. The specimens were divided into three groups, including three double-row reinforced ceramsite concrete sandwich wall panels with different dosages of alkali-resistant glass fiber, a double-row reinforced ordinary concrete sandwich wall panel, and a solid concrete ceramic wallboard. The effects of different dosages of alkali-resistant glass fiber, construction forms, and bearing side plate materials on the seismic performance of the sandwich wall panels were investigated separately for the specimens. From the analysis of the specimen results (damage characteristics, hysteresis curves, energy dissipation capacity, bearing capacity, ductility, longitudinal reinforcement strain, and stiffness degradation), it could be seen that among the five types of wallboard, the double-row reinforced ceramsite concrete sandwich wall panel with 0.3% fiber content had the best ductility and energy dissipation capacity. Adding fiber could solve or improve the problem of the low ultimate bearing capacity of ceramsite concrete as the wallboard’s bearing material. Compared with the same size solid ordinary concrete wallboard, the bearing capacity of the double-row reinforced ceramic concrete sandwich panel was slightly reduced. However, the additional seismic performance indexes were relatively superior. Through the analysis of the test results, it was shown that, when considering the thermal performance and seismic capacity, the new wall panel had good prospects for engineering applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ao Zhou ◽  
Kwun-Wah Wong ◽  
Denvid Lau

Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.


2020 ◽  
Vol 138 ◽  
pp. 106299 ◽  
Author(s):  
Chengshun Xu ◽  
Pengfei Dou ◽  
Xiuli Du ◽  
M. Hesham El Naggar ◽  
Masakatsu Miyajima ◽  
...  

2018 ◽  
Vol 38 ◽  
pp. 03034
Author(s):  
Ying Chang Wu ◽  
Liu Peng Sheng ◽  
Wei Jian Zhao

The development of precast concrete structure is an effective way to promote industrialization of construction industry and housing industrialization, and is also a inevitable choice for green development. Grouted splice sleeve connector, regarded as one of the key technologies of precast concrete structure, has the advantages of high strength and good seismic performance. In this paper, the development of grouted splice sleeve connector is systematically summarized both home and abroad, existing problems in the domestic research of sleeve are evaluated and analyzed, and corresponding countermeasures are also further proposed.


2013 ◽  
Vol 07 (03) ◽  
pp. 1350023 ◽  
Author(s):  
P. BENSON SHING ◽  
IOANNIS KOUTROMANOS ◽  
ANDREAS STAVRIDIS

This paper presents the findings of a research that focused on the seismic performance of masonry-infilled, nonductile, RC frames. This research has resulted in improved analytical methods and effective retrofit techniques to assess and enhance the performance of these structures. The methods were validated by a series of quasi-static tests conducted on one-story frame specimens as well as shake-table tests conducted on two 2/3-scale, three-story, two-bay, masonry-infilled, RC frames. This paper focuses on the observations from the shake-table tests and the further insight gained from a numerical study conducted with finite element models. The first shake-table test specimen had no retrofit measures, and the second had infill walls in the first and second stories strengthened with Engineered Cementitious Composite (ECC) and Fiber Reinforced Polymeric (FRP) overlays, respectively. The tests demonstrated the effectiveness of the retrofit measures. Finite element models that combine smeared and discrete cracks have been used in a numerical study to examine the benefits of the ECC retrofit and the influence of the capacity of the shear dowels that connect an ECC overlay to the RC beams on structural performance. It has been shown that these shear dowels play a critical role in enhancing both the strength and ductility of a retrofitted structure.


Sign in / Sign up

Export Citation Format

Share Document