scholarly journals Seismic Performance Test of Double-Row Reinforced Ceramsite Concrete Composite Wall Panels with Cores

2021 ◽  
Vol 11 (6) ◽  
pp. 2688
Author(s):  
Shaochun Ma ◽  
Lianghui Li ◽  
Peng Bao

The research objective of this study was the seismic performance of double-row reinforced ceramsite concrete sandwich wall panels. The feasibility of upgrading a new wall panel from a non-load-bearing partition wall to a load-bearing seismic wall was examined by conducting cyclic load tests on five wall panel specimens. The test piece was a sandwich thermal insulation structure that could achieve a good protection distance between the thermal insulation material and the fire source so that the fire prevention problem could be solved. At the same time, the problem of easy fall-off of the insulation system was also solved. The specimens were divided into three groups, including three double-row reinforced ceramsite concrete sandwich wall panels with different dosages of alkali-resistant glass fiber, a double-row reinforced ordinary concrete sandwich wall panel, and a solid concrete ceramic wallboard. The effects of different dosages of alkali-resistant glass fiber, construction forms, and bearing side plate materials on the seismic performance of the sandwich wall panels were investigated separately for the specimens. From the analysis of the specimen results (damage characteristics, hysteresis curves, energy dissipation capacity, bearing capacity, ductility, longitudinal reinforcement strain, and stiffness degradation), it could be seen that among the five types of wallboard, the double-row reinforced ceramsite concrete sandwich wall panel with 0.3% fiber content had the best ductility and energy dissipation capacity. Adding fiber could solve or improve the problem of the low ultimate bearing capacity of ceramsite concrete as the wallboard’s bearing material. Compared with the same size solid ordinary concrete wallboard, the bearing capacity of the double-row reinforced ceramic concrete sandwich panel was slightly reduced. However, the additional seismic performance indexes were relatively superior. Through the analysis of the test results, it was shown that, when considering the thermal performance and seismic capacity, the new wall panel had good prospects for engineering applications.

2013 ◽  
Vol 680 ◽  
pp. 234-238
Author(s):  
Jin Li Qiao ◽  
Wen Ling Tian ◽  
Ming Jie Zhou ◽  
Fang Lu Jiang ◽  
Kun Zhao

In order to validate the seismic performance of reinforced concrete grid-mesh frame wall , four grid frame walls in half size is made with different height-width ratios and different grid forms in the paper. Two of them are filling with cast-in-place plaster as filling material. According to the experimental results of these four walls subjected to horizontal reciprocating loads, we know that the grid-mesh frame wall's breaking form are in stages and multiple modes, and the main influencing factors are height-width ratio and grid form, what's more, with cast-in-place plaster as fill material, could not only improve the level of the wall bearing capacity and stiffness, but also improve the ductility and seismic energy dissipation capacity.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2942
Author(s):  
Yun Liu ◽  
Gonglian Chen ◽  
Zhipeng Wang ◽  
Zhen Chen ◽  
Yujia Gao ◽  
...  

Autoclaved aerated concrete (AAC) self-insulation block masonry is often used for the infill walls in steel and concrete frame structures. To work together with the frame under earthquake action, it is essential to understand the seismic behavior of AAC self-insulation block masonry walls. In this paper, six AAC self-insulation block masonry walls were experimentally studied under the pseudo static test. The load-displacement hysteretic curves were drawn with the test data. The failure characteristics, loading capacity, stiffness degeneration, energy dissipation capacity and hysteretic behavior are analyzed. The results indicate that the blocks underwent internal failure due to the lower strength with a larger size, but the walls had good energy dissipation capacity with a rational bearing capacity. Accompanied by the influence of vertical compressive stress on the top surface of the walls, the cracking resistance, ultimate bearing capacity, deformability and energy dissipation capacity of the walls were affected by the masonry mortar joints. Comparatively, the walls with thin-layer mortar joints had better seismic performance than those with insulation mortar joints or with vertical joints filled by mineral wool plates. Finally, the shear capacity of the walls under seismic load is evaluated referring to the formulas of current design codes for masonry walls.


2014 ◽  
Vol 501-504 ◽  
pp. 1580-1586
Author(s):  
Jian Yang Xue ◽  
Jian Peng Lin ◽  
Hui Ma

The pseudo-static tests were carried out on seven steel reinforced recycled concrete columns. The main parameters of specimens were recycled aggregate replacement ratio, axial compression ratio and volumetric stirrup ratio. The results indicate that the incorporation of recycled aggregate doesnt reduce the horizontal bearing capacity, ductility and the energy dissipation capacity of specimens and has little effect on seismic performance. The seismic performance of steel reinforced recycled concrete column decreases significantly in the high axial compression ratio. The ductility, horizontal bearing capacity and the energy dissipation capacity of the steel reinforced recycled concrete column increase with a rise in the volumetric stirrup ratio. This study provides a reference on the application of the steel reinforced recycled concrete column.


2013 ◽  
Vol 594-595 ◽  
pp. 1020-1024 ◽  
Author(s):  
Mohd Faiz Md Fudzee ◽  
Nor Hayati Hamid

In this paper, the seismic performance of the insulated sandwich wall panel is studied. Two samples W1 and W2 of Insulated Sandwich Wall Panel (ISWP) were tested under in-plane lateral cyclic loading. The difference between W1 and W2 is the numbers of wall plug used in order to hold the specimen in standing parallel position. Four wall plugs used for W1 meanwhile eleven wall plugs used for W2. ISWP is placed axially on top of the foundation beam. The concrete block is slotted on top of the wall panel as load transfer from the roof. The aspect ratio of the specimen is Ar = H/B = 1.97 and slenderness ratio is λ = H/t = 36.92. The testing is conducted with small percent of drift which is 0.1% and continued with 0.2%. The drift was increased gradually about 0.2% until reach ±1.0%. Furthermore, the specimen was tested with an increment of ±0.2% drift until the specimens reach the strength capacity. The experimental results showed that for the first specimen, the wall panel behaves elastically up to 0.4% drift before yielding. Due to loading and unloading condition, the aluminium frame that used along the perimeter of the wall panel buckled at 1.2% drift. For the second specimen the wall panel behaves elastically up to 0.4% drift before yielding. Once 0.6% drift applied, crack started to appear at the connection joint between G.I channel and foundation beam. The analysis of the result from the graphs of hysteresis loop for both W1 and W2 were presented by considering the seismic parameter such as stiffness, ductility and equivalent viscous damping.


2022 ◽  
Author(s):  
Feng Xiong ◽  
Wen Chen ◽  
Qi Ge ◽  
Jiang Chen ◽  
Yang Lu

Abstract A novel low-rise bolt - assembled precast concrete sandwich wall panel structure for rural residential houses was proposed, in which the connections between wall and wall, and wall and floor were connected by high strength bolts and steel plates. The bolt joints can be easily installed and disassembled. They are replaceable to make the precast structure demountable and reassembled. All the components are connected together by the novel bolted connectors. This paper presents the shake-table tests of a full-scale two-story bolt-assembled precast concrete sandwich wall building. The results indicated that the proposed structural system had good seismic performance and remained in the elastic stage with no damage after 9-degree rare earthquake excitation for the Model-1. The Model-2 exhibited excellent capacity and performed satisfactorily under the excitation up to 0.8 g. Cracks were observed at the wall openings and the base of walls and columns, which was similar to that of a cast-in-situ structure. The damage statuses were mainly light damage and moderate damage. The bolt connection joints were not anti-seismic weak places and had good seismic performance. Equivalent base shear method is suitable for estimating the seismic demand of the proposed precast concrete sandwich wall panel structure.


2019 ◽  
Vol 9 (20) ◽  
pp. 4336 ◽  
Author(s):  
Chao Liu ◽  
Xiangyun Nong ◽  
Fengjian Zhang ◽  
Zonggang Quan ◽  
Guoliang Bai

This paper aims to manufacture recycled concrete hollow block (RCHB) which can be used for the masonry structure with seismic requirements. Five RCHB masonry walls were tested under cyclic loading to evaluate the effect of the axial compression stress, aspect ratio, and the materials of structural columns on the seismic performance. Based on the test results, the failure pattern, hysteresis curves, lateral drift, ductility, stiffness degradation, and the energy dissipation of the specimens were analyzed in detail. The results showed that with the increase of aspect ratios, the ductility of RCHB masonry walls increased, but the horizontal bearing capacity and energy dissipation of RCHB masonry walls decreased. With the increase of compressive stress, the bearing capacity and energy dissipation performance of RCHB masonry walls were improved, and the stiffness degraded slowly. The results also demonstrated that the RCHB masonry walls with structural columns, depending on whether the structural columns were prepared by ordinary concrete or recycled concrete, could increase the bearing capacity, ductility, and energy dissipation of specimens. The research confirmed that RCHB masonry walls could meet the seismic requirements through thoughtful design. Therefore, this study provided a new cleaner production for the utilization of construction waste resources.


2013 ◽  
Vol 438-439 ◽  
pp. 1529-1532
Author(s):  
Ya Bin Yang ◽  
Wan Lin Cao

Concrete filled steel tube (CFST) got a good application in actual project. In order to further the seismic performance of the CFST, experiment was carried on two 1/5 scale models, which included one CFST frame, one CFST truss. Based on the experimental study, load-carrying capacity, stiffness, ductility, hysteretic property, energy dissipation and failure phenomena of each model were analyzed. The study shows that the seismic performance of CFST truss has high bearing capacity, stiffness, energy dissipation capacity and good ductility.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 737
Author(s):  
Zongping Chen ◽  
Yuhan Liang ◽  
Xuebing Zhao ◽  
Ji Zhou

To study the seismic performance of embedded polyvinyl chloride (PVC) pipe confined reinforced high-strength concrete (PVC-RHC) columns, five specimens are designed for cyclic loading test, which include three PVC-RHC column specimens, an embedded circle steel tube confined reinforced high-strength concrete (CST-RHC) column specimen, and a reinforced high-strength concrete (RHC) column specimen. The failure mechanism and morphology are revealed by experiments. The influences of PVC pipe diameter, axial compression ratio, and concrete strength on seismic performance indexes are analyzed. The research results indicate thhe following: all specimens displayed shear baroclinic failure. Compared with RHC specimens, the hysteretic curves of the PVC-RHC specimen and CST-RHC specimen were fuller; furthermore, their energy dissipation capacity, deformation, and ductility were more beneficial. With the increase of the diameter–length ratio and axial pressure, the energy dissipation capacity and deformation capacity of PVC-RHC specimens decreased. The shear bearing capacity of the PVC-RHC specimen calculated with “concrete structure design code” (GB 50010-2010) was smaller than the test results by 25%, showing an excessive safety margin. Thus, according to the failure mechanism of the PVC-RHC specimen, a new calculation formula of shear bearing capacity is deduced, which is in good agreement with the experimental results.


2013 ◽  
Vol 859 ◽  
pp. 95-99
Author(s):  
Yan Zhao ◽  
Hong Yu Jiang ◽  
Jie Gu ◽  
Ru Qin Wang

Hollow rectangular reinforced concrete piers have been widely used in tall-column and long-span bridges. Two large-scale experimental models of the hollow reinforced concrete bridge piers were built to study the seismic performance of the piers subjected to biaxial bending under constant axial load. The objective is to evaluate seismic performances of the model piers and the factors affecting the seismic performance of the model piers by comparing their failure mechanism, bearing capacity, ductility, energy dissipation capacity, etc. The results show that the hollow rectangular specimen experienced flexural failure with plastic hinges formed at the bottom of the piers when subjected to combined axial load and biaxial bending. The bearing capacity of the specimen increases greatly and the ductility decrease insignificantly as the axial compression ratio increases from 0.1 to 0.2, while the energy dissipation capacity is increased by 121.8%, however, the absolute value of total cumulative hysteretic energy is not magnificent.


2020 ◽  
pp. 136943322098272
Author(s):  
Hui Su ◽  
Wei Chen ◽  
Dongyue Wu ◽  
Qing Wu ◽  
Shiling Wang ◽  
...  

The seismic performance of the precast shear wall was improved by using a newly developed reinforced tenon to strengthen the precast joint, which is used to bear the shear force of the precast joint and reduce the effect of dowel action on the vertical connecting steel bars. The vertical connecting steel bars were only used to bear tensile and compressive stress and consume seismic energy. The seismic performance of reinforced tenon precast shear wall was investigated by quasi-static tests on one reinforced tenon precast shear wall specimen and one ordinary flat seam precast shear wall specimen. This study investigated the crack distribution and failure modes, precast joint slip of the two specimens, and the seismic performance parameters such as bearing capacity, stiffness degradation, ductility performance and energy dissipation capacity. The test results demonstrated that the reinforced tenon effectively reduced the slip of the joint surface and exhibited good ductility and energy dissipation capacity than that of the ordinary flat seam specimen, while the failure mode, bearing capacity, and stiffness were similar to that of the flat seam specimen.


Sign in / Sign up

Export Citation Format

Share Document