scholarly journals Striatal Syntaixin 1A Plays a Protective Role Against Iminodipropionitrile Induced Tic Disorder Through Interaction with Dopamine Transporter

Author(s):  
Xiumei Liu ◽  
Xueming Wang ◽  
Xiaoling Zhang ◽  
Aihua Cao

Abstract An important mechanism of Tic disorder (TD) is dysfunction in the dopamine (DA) system. Our pilot observation found the expression of Syntaxin 1A (STX1A), a presynaptic SNARE complex, changed in the striatum of TD animals. The present study aimed to clarify the biological role of striatal STX1A in the pathological state of TD and the specific mechanism of its regulation of the dopaminergic system. The TD rat model was established using iminodipropionitrile (IDPN). Adenovirus was used to modulate the expression of STX1A and dopamine transporter (DAT) in vivo and vitro. Primary culture of striatal dopaminergic neurons was performed for in-vitro observation of the DA reuptake, CO-IP analysis of the interaction between STX1A and DAT. First, using immunofluorescence staining, Western blotting, and qPCR, we found that the IDPN induced TD model had reduced striatal STX1A expression. In vitro, the DA content in the supernatant was significantly lower in the STX1A overexpressed group, and the intracellular DA content was significantly higher. Overexpression of STX1A in vivo partially counteracts the IDPN-induced TD-like behaviors, including bite time and head shaking time. Meanwhile, in-vivo knockdown of STX1A can aggravates TD-like behaviors. Further, DAT was overexpressed in vivo, and the TD-like behavior was alleviated. Interestingly, overexpression of DAT in the striatum resulted in increased levels of STX1A. In order to clarify the interaction between DAT and STX1A, the CO-IP analysis was conducted based on the protein of purified striatal dopaminergic neurons. Compared to the IgG control, the blots of DAT and STX1A showed significant binding of each other. Striatal STX1A expression is decreased in TD development, and STX1A plays an anti-TD role possibly through interaction with DAT, which maintains the DA reuptake. The exorbitant DA signal caused by STX1A inhibition drives the pathological stereotyped behavior.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jing-Shang Wang ◽  
Ye Huang ◽  
Shuping Zhang ◽  
Hui-Jun Yin ◽  
Lei Zhang ◽  
...  

Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.


2019 ◽  
Vol 316 (1) ◽  
pp. L269-L279 ◽  
Author(s):  
Tianwen Lai ◽  
Mindan Wu ◽  
Chao Zhang ◽  
Luanqing Che ◽  
Feng Xu ◽  
...  

Histone deacetylase (HDAC)2 is expressed in airway epithelium and plays a pivotal role in inflammatory cells. However, the role of HDAC2 in allergic airway inflammation remains poorly understood. In the present study, we determined the role of HDAC2 in airway inflammation using in vivo models of house dust mite (HDM)-induced allergic inflammation and in vitro cultures of human bronchial epithelial (HBE) cells exposed to HDM, IL-17A, or both. We observed that HDM-challenged Hdac2+/− mice exhibited substantially enhanced infiltration of inflammatory cells. Higher levels of T helper 2 cytokines and IL-17A expression were found in lung tissues of HDM-challenged Hdac2+/− mice. Interestingly, IL-17A deletion or anti-IL-17A treatment reversed the enhanced airway inflammation induced by HDAC2 impairment. In vitro, HDM and IL-17A synergistically decreased HDAC2 expression in HBE cells. HDAC2 gene silencing further enhanced HDM- and/or IL-17A-induced inflammatory cytokines in HBE cells. HDAC2 overexpresion or blocking IL-17A gene expression restored the enhanced inflammatory cytokines. Collectively, these results support a protective role of HDAC2 in HDM-induced airway inflammation by suppressing IL-17A production and might suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of allergic airway inflammation.


2018 ◽  
Vol 314 (6) ◽  
pp. G655-G667 ◽  
Author(s):  
Zhao Lei ◽  
Meihong Deng ◽  
Zhongjie Yi ◽  
Qian Sun ◽  
Richard A. Shapiro ◽  
...  

Liver ischemia-reperfusion (I/R) injury occurs through induction of oxidative stress and release of damage-associated molecular patterns (DAMPs), including cytosolic DNA released from dysfunctional mitochondria or from the nucleus. Cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS) is a cytosolic DNA sensor known to trigger stimulator of interferon genes (STING) and downstream type 1 interferon (IFN-I) pathways, which are pivotal innate immune system responses to pathogen. However, little is known about the role of cGAS/STING in liver I/R injury. We subjected C57BL/6 (WT), cGAS knockout (cGAS−/−), and STING-deficient (STINGgt/gt) mice to warm liver I/R injury and that found cGAS−/− mice had significantly increased liver injury compared with WT or STINGgt/gt mice, suggesting a protective effect of cGAS independent of STING. Liver I/R upregulated cGAS in vivo and also in vitro in hepatocytes subjected to anoxia/reoxygenation (A/R). We confirmed a previously published finding that hepatocytes do not express STING under normoxic conditions or after A/R. Hepatocytes and liver from cGAS−/− mice had increased cell death and reduced induction of autophagy under hypoxic conditions as well as increased apoptosis. Protection could be restored in cGAS−/− hepatocytes by overexpression of cGAS or by pretreatment of mice with autophagy inducer rapamycin. Our findings indicate a novel protective role for cGAS in the regulation of autophagy during liver I/R injury that occurs independently of STING. NEW & NOTEWORTHY Our studies are the first to document the important role of cGAS in the acute setting of sterile injury induced by I/R. Specifically, we provide evidence that cGAS protects liver from I/R injury in a STING-independent manner.


Life Sciences ◽  
2019 ◽  
Vol 218 ◽  
pp. 233-240 ◽  
Author(s):  
Carolina del Valle Bessone ◽  
Hugo Diaz Fajreldines ◽  
Gabriela Edit Diaz de Barboza ◽  
Nori Graciela Tolosa de Talamoni ◽  
Daniel Alberto Allemandi ◽  
...  
Keyword(s):  

Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 122 ◽  
Author(s):  
Xiu He ◽  
Shi Chen ◽  
Chao Li ◽  
Jiaqi Ban ◽  
Yungeng Wei ◽  
...  

Silicosis is an occupational lung disease characterized by persistent inflammation and irreversible fibrosis. Crystalline silica (CS) particles are mainly phagocytized by alveolar macrophages (AMs), which trigger apoptosis, inflammation, and pulmonary fibrosis. Previously, we found that autophagy-lysosomal system dysfunction in AMs was involved in CS-induced inflammation and fibrosis. Induction of autophagy and lysosomal biogenesis by transcription factor EB (TFEB) nuclear translocation can rescue fibrotic diseases. However, the role of TFEB in silicosis is unknown. In this study, we found that CS induced TFEB nuclear localization and increased TFEB expression in macrophages both in vivo and in vitro. However, TFEB overexpression or treatment with the TFEB activator trehalose (Tre) alleviated lysosomal dysfunction and enhanced autophagic flux. It also reduced apoptosis, inflammatory cytokine levels, and fibrosis. Both pharmacologically inhibition of autophagy and TFEB knockdown in macrophages significantly abolished the antiapoptotic and anti-inflammatory effects elicited by either TFEB overexpression or Tre treatment. In conclusion, these results uncover a protective role of TFEB-mediated autophagy in silicosis. Our study suggests that restoration of autophagy-lysosomal function by Tre-induced TFEB activation may be a novel strategy for the treatment of silicosis.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Yunchang Liu ◽  
Liping Zeng ◽  
Yong Yang ◽  
Chen Chen ◽  
Daowen Wang ◽  
...  

Abstract In this study, we first established the doxorubicin-induced cardiotoxicity (DIC) model with C57BL/6 mice and confirmed cardiac dysfunction with transthoracic echocardiography examination. RNA-sequencing was then performed to explore the potential mechanisms and transcriptional changes in the process. The metabolic pathway, biosynthesis of polyunsaturated fatty acid was significantly altered in DOX-treated murine heart, and Acot1 was one of the leading-edge core genes. We then investigated the role of Acot1 to ferroptosis that was reported recently to be related to DIC. The induction of ferroptosis in the DOX-treated heart was confirmed by transmission electron microscopy, and the inhibition of ferroptosis using Fer-1 effectively prevented the cardiac injury as well as the ultrastructure changes of cardiomyocyte mitochondrial. Both in vitro and in vivo experiments proved the downregulation of Acot1 in DIC, which can be partially prevented with Fer-1 treatment. Overexpression of Acot1 in cell lines showed noteworthy protection to ferroptosis, while the knock-down of Acot1 sensitized cardiomyocytes to ferroptosis by DIC. Finally, the heart tissue of αMHC-Acot1 transgenic mice presented altered free fatty acid composition, indicating that the benefit of Acot1 in the inhibition of ferroptosis lies biochemically and relates to its enzymatic function in lipid metabolism in DIC. The current study highlights the importance of ferroptosis in DIC and points out the potential protective role of Acot1 in the process. The beneficial role of Acot1 may be related to its biochemical function by shaping the lipid composition. In all, Acot1 may become a potential treating target in preventing DIC by anti-ferroptosis.


Author(s):  
Ya-Dong Li ◽  
Yan-Jia Luo ◽  
Wei Xu ◽  
Jing Ge ◽  
Yoan Cherasse ◽  
...  

Abstract The ventral pallidum (VP) regulates motivation, drug addiction, and several behaviors that rely on heightened arousal. However, the role and underlying neural circuits of the VP in the control of wakefulness remain poorly understood. In the present study, we sought to elucidate the specific role of VP GABAergic neurons in controlling sleep–wake behaviors in mice. Fiber photometry revealed that the population activity of VP GABAergic neurons was increased during physiological transitions from non-rapid eye movement (non-REM, NREM) sleep to either wakefulness or REM sleep. Moreover, chemogenetic and optogenetic manipulations were leveraged to investigate a potential causal role of VP GABAergic neurons in initiating and/or maintaining arousal. In vivo optogenetic stimulation of VP GABAergic neurons innervating the ventral tegmental area (VTA) strongly promoted arousal via disinhibition of VTA dopaminergic neurons. Functional in vitro mapping revealed that VP GABAergic neurons, in principle, inhibited VTA GABAergic neurons but also inhibited VTA dopaminergic neurons. In addition, optogenetic stimulation of terminals of VP GABAergic neurons revealed that they promoted arousal by innervating the lateral hypothalamus, but not the mediodorsal thalamus or lateral habenula. The increased wakefulness chemogenetically evoked by VP GABAergic neuronal activation was completely abolished by pretreatment with dopaminergic D1 and D2/D3 receptor antagonists. Furthermore, activation of VP GABAergic neurons increased exploration time in both the open-field and light–dark box tests but did not modulate depression-like behaviors or food intake. Finally, chemogenetic inhibition of VP GABAergic neurons decreased arousal. Taken together, our findings indicate that VP GABAergic neurons are essential for arousal related to motivation.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Qian Wang ◽  
Xuefei Tian ◽  
Wei’e Zhou ◽  
Yan Wang ◽  
Hailing Zhao ◽  
...  

Tangshen Formula (TSF) is a Chinese Medicine formula that has been reported to alleviate proteinuria and protect renal function in humans and animals with diabetic kidney disease (DKD). However, little is known about its mechanism in improving proteinuria. The dysregulation of podocyte cell-matrix adhesion has been demonstrated to play an important role in the pathogenesis and progression of proteinuric kidney diseases including DKD. In the present study, the underlying protective mechanism of TSF on podocytes was investigated using the murine model of type 2 DKD db/db mice in vivo and advanced glycation end products (AGEs)-stimulated primary mice podocytes in vitro. Results revealed that TSF treatment could significantly mitigate reduction of podocyte numbers and foot process effacement, reduce proteinuria, and protect renal function in db/db mice. There was a significant increase in expression of transient receptor potential canonical channel 6 (TRPC6) and a decrease in expression of talin1 in podocytes of db/db mice. The results of AGEs-stimulated primary mice podocytes showed increased cell migration and actin-cytoskeleton rearrangement. Moreover, primary mice podocytes stimulated by AGEs displayed an increase in TRPC6-dependent Ca2+ influx, a loss of talin1, and translocation of nuclear factor of activated T cell (NFATC) 2. These dysregulations in mice primary podocytes stimulated by AGEs could be significantly attenuated after TSF treatment. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC6 agonist, blocked the protective role of TSF on podocyte cell-matrix adherence. In conclusion, TSF could protect podocytes from injury and reduce proteinuria in DKD, which may be mediated by the regulation of the TRPC6/Talin1 pathway in podocytes.


Sign in / Sign up

Export Citation Format

Share Document