scholarly journals Comparative Analysis of Super-enhancers Across Mammals Reveals Their High Function Conservation

Author(s):  
Yanling Peng ◽  
Yubo Zhang

Abstract BackgroundSuper-enhancers (SEs) are key positive regulatory elements in defining cells/tissues identity in mammals, yet their similarities and differences of sequence and function across mammals have been poor studied. To allow sequence and function comparison across mammalian SEs, we employ H3K27ac ChIP-seq data to six cell types/tissues across human, pig, and mouse, which represent different lineages of mammals in the evolutionary tree.ResultsOverall, a median of 848 human SEs, 888 pig SEs and 503 mouse SEs are identified across cells/tissues. These SEs are largely distributed in promoter regions for human (91.9% in median) and mouse (63.4% in median), while mostly in distal intergenic regions for pig (66.1% in median). Extremely higher unique orthologous SEs frequency (91.6%~92.1%) has been detected for the same cell/tissue across species. Consistently, their overlapping rates are very low for the same cell/tissue across species (0.1%~0.5%). For the SE-associated orthologous genes, they also show high unique frequency for species (63.3%~83.9%) and low overlapping rates (0.8%~1.3%) at inter-species comparison. However, orthologous SEs function comparisons across species have shown similar biological processes related to cells/tissues identity in the top 15 significant enriched terms for the same cell/tissue. Meanwhile, common core transcription factors that determine cells/tissues identity are determined for the same cell/tissue across mammals.ConclusionsThis study highlights the differences of SEs genomic distribution across mammals. It reveals low orthologous sequence overlapping but high function conservation of SEs across mammals. It would improve our understanding of regulation function cis-regulatory elements in mammals.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Guillermo Barturen ◽  
Stefanie Geisen ◽  
Francisco Dios ◽  
E. J. Maarten Hamberg ◽  
Michael Hackenberg ◽  
...  

Hypomethylated, CpG-rich DNA segments (CpG islands, CGIs) are epigenome markers involved in key biological processes. Aberrant methylation is implicated in the appearance of several disorders as cancer, immunodeficiency, or centromere instability. Furthermore, methylation differences at promoter regions between human and chimpanzee strongly associate with genes involved in neurological/psychological disorders and cancers. Therefore, the evolutionary comparative analyses of CGIs can provide insights on the functional role of these epigenome markers in both health and disease. Given the lack of specific tools, we developedCpGislandEVO. Briefly, we first compile a database of statistically significant CGIs for the best assembled mammalian genome sequences available to date. Second, by means of a coupled browser front-end, we focus on the CGIs overlapping orthologous genes extracted fromOrthoDB, thus ensuring the comparison between CGIs located on truly homologous genome segments. This allows comparing the main compositional features between homologous CGIs. Finally, to facilitate nucleotide comparisons, we lifted genome coordinates between assemblies from different species, which enables the analysis of sequence divergence by direct count of nucleotide substitutions and indels occurring between homologous CGIs. The resultingCpGislandEVOdatabase, linking together CGIs and single-cytosine DNA methylation data from several mammalian species, is freely available at our website.



2019 ◽  
Author(s):  
Leila Haery ◽  
Benjamin E. Deverman ◽  
Katherine Matho ◽  
Ali Cetin ◽  
Kenton Woodard ◽  
...  

AbstractCell-type-specific expression of molecular tools and sensors is critical to construct circuit diagrams and to investigate the activity and function of neurons within the nervous system. Strategies for targeted manipulation include combinations of classical genetic tools such as Cre/loxP and Flp/FRT, use of cis-regulatory elements, targeted knock-in transgenic mice, and gene delivery by AAV and other viral vectors. The combination of these complex technologies with the goal of precise neuronal targeting is a challenge in the lab. This report will discuss the theoretical and practical aspects of combining current technologies and establish best practices for achieving targeted manipulation of specific cell types. Novel applications and tools, as well as areas for development, will be envisioned and discussed.



2020 ◽  
Author(s):  
Shiri Kult ◽  
Tsviya Olender ◽  
Marco Osterwalder ◽  
Sharon Krief ◽  
Ronnie Blecher-Gonen ◽  
...  

AbstractThe connection between different tissues is vital for the development and function of any organs and systems. In the musculoskeletal system, the attachment of elastic tendons to stiff bones poses a mechanical challenge that is solved by the formation of a transitional tissue, which allows the transfer of muscle forces to the skeleton without tearing. Here, we show that tendon-to-bone attachment cells are bi-fated, activating a mixture of chondrocyte and tenocyte transcriptomes, which is regulated by sharing regulatory elements with these cells and by Krüppel-like factors transcription factors (KLF).To uncover the molecular identity of attachment cells, we first applied high-throughput RNA sequencing to murine humeral attachment cells. The results, which were validated by in situ hybridization and single-molecule in situ hybridization, reveal that attachment cells express hundreds of chondrogenic and tenogenic genes. In search for the underlying mechanism allowing these cells to express these genes, we performed ATAC sequencing and found that attachment cells share a significant fraction of accessible intergenic chromatin areas with either tenocytes or chondrocytes. Epigenomic analysis further revealed transcriptional enhancer signatures for the majority of these regions. We then examined a subset of these regions using transgenic mouse enhancer reporter. Results verified the shared activity of some of these enhancers, supporting the possibility that the transcriptome of attachment cells is regulated by enhancers with shared activities in tenocytes or chondrocytes. Finally, integrative chromatin and motif analyses, as well as the transcriptome data, indicated that KLFs are regulators of attachment cells. Indeed, blocking the expression of Klf2 and Klf4 in the developing limb mesenchyme led to abnormal differentiation of attachment cells, establishing these factors as key regulators of the fate of these cells.In summary, our findings show how the molecular identity of bi-fated attachment cells enables the formation of the unique transitional tissue that connect tendon to bone. More broadly, we show how mixing the transcriptomes of two cell types through shared enhancers and a dedicated set of transcription factors can lead to the formation of a new cell fate that connects them.



Author(s):  
Zilin Nie ◽  
Yanming Nie

Systems biology has been established for more than a decade in the post-genomic era. With the help of the computational and mathematical tools, systems biology reconstitutes the entire scenario of the cell, tissue and even organism from the pieces data generated in the past decades. However, the modern biology is mainly focusing on the structure and function of the biomolecule, cell, tissue or organ, which are far from the essence of the life because of missing thermodynamic information. It is doubtable that the current systems biology-based omics is no-how to fully understand the dynamic courses of the structure, function and information in life. For this reason, we promote a novel concept of aquamoleculomics, in which the biological structure and function as well as thermodynamic characteristics and bioinformation of the aquamolecule complexes are included in this theoretical model of systems biology. Water is mother of life, matter and matrix of organism. Indeed, the fundamental roles of H2O molecules in biological processes might be dramatically underestimated. Extremely speaking, H2O networks in the living system might be engaged in all the biological processes including building all the biological structures, the residential places of the motherhood molecules as the honeycombs of honeybees.



2021 ◽  
Author(s):  
Chieh-Ren Hsia ◽  
Jawuanna McAllister ◽  
Ovais Hasan ◽  
Julius Judd ◽  
Seoyeon Lee ◽  
...  

During migration, cells often squeeze through small constrictions, requiring extensive deformation. We hypothesized that the nuclear deformation associated with such confined migration could alter chromatin organization and function. Studying cells migrating through collagen matrices and microfluidic devices that mimic interstitial spaces in vivo, we found that confined migration results in increased H3K9me3 and H3K27me3 heterochromatin marks that persist for several days. This "confined migration-induced heterochromatin" (CMiH) was distinct from heterochromatin formation during migration initiation. CMiH predominantly decreased chromatin accessibility at intergenic regions near centromeres and telomeres, suggesting heterochromatin spreading from existing heterochromatin sites. Consistent with the overall decrease in chromatin accessibility, global transcription was decreased during confined migration. Intriguingly, we also identified increased accessibility at promoter regions of genes linked to chromatin silencing, tumor invasion, and DNA damage response. Inhibiting CMiH reduced migration speed, suggesting that CMiH promotes confined migration. Together, our findings indicate that confined migration induces chromatin changes that regulate cell migration and other cellular functions.



2021 ◽  
Author(s):  
Antonio Leal-Morales ◽  
Marta Pulido-Sánchez ◽  
Aroa López Sánchez ◽  
Fernando Govantes

A single region of the Pseudomonas putida genome, designated the flagellar cluster, includes 59 genes potentially involved in the biogenesis and function of the flagellar system. Here we combine bioinformatics and in vivo gene expression analyses to clarify the transcriptional organization and regulation of the flagellar genes in the cluster. We have identified eleven flagellar operons and characterized twenty-one primary and internal promoter regions. Our results indicate that synthesis of the flagellar apparatus and core chemotaxis machinery is regulated by a three-tier cascade in which fleQ is the sole Class I gene, standing at the top of the transcriptional hierarchy. FleQ- and σ54-dependent Class II genes encode most components of the flagellar structure, part of the chemotaxis machinery and multiple regulatory elements, including the flagellar σ factor FliA. FliA activation of Class III genes enables synthesis of the filament, one stator complex and completion of the chemotaxis apparatus. Accessory regulatory proteins and an intricate operon architecture add complexity to the regulation by providing feedback and feed-forward loops to the main circuit. Because of the high conservation of the gene arrangement and promoter motifs, we believe that the regulatory circuit presented here may also apply to other environmental Pseudomonas.



2014 ◽  
Author(s):  
Olgert Denas ◽  
Richard Sandstrom ◽  
Yong Cheng ◽  
Kathryn Beal ◽  
Javier Herrero ◽  
...  

Background: Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, the relationships among sequence, conservation, and function are still poorly understood. Results: We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of TFos not showing conservation of occupancy, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest that a substantial amount of functional regulatory sequences is exapted from other biochemically active genomic material. Despite substantial repurposing of TFos, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TF – target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. Conclusion: We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse. A comparative analysis of this correspondence unveiled the extent of the shared regulatory sequence across TFs and cell types under study. Importantly, a large part of the shared regulatory sequence repurposed on the other species. This sequence, fueled by turnover events, provides a strong case for exaptation in regulatory elements.



1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.



2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amitava Basu ◽  
Vijay K. Tiwari

AbstractEpigenetic mechanisms are known to define cell-type identity and function. Hence, reprogramming of one cell type into another essentially requires a rewiring of the underlying epigenome. Cellular reprogramming can convert somatic cells to induced pluripotent stem cells (iPSCs) that can be directed to differentiate to specific cell types. Trans-differentiation or direct reprogramming, on the other hand, involves the direct conversion of one cell type into another. In this review, we highlight how gene regulatory mechanisms identified to be critical for developmental processes were successfully used for cellular reprogramming of various cell types. We also discuss how the therapeutic use of the reprogrammed cells is beginning to revolutionize the field of regenerative medicine particularly in the repair and regeneration of damaged tissue and organs arising from pathological conditions or accidents. Lastly, we highlight some key challenges hindering the application of cellular reprogramming for therapeutic purposes.



Sign in / Sign up

Export Citation Format

Share Document