scholarly journals Osthole Inhibits Osteoclast Formation and Enhances Bone Mass of Bone Marrow Mesenchymal Stem cells by Activating β-catenin-OPG Signaling Pathway

Author(s):  
Zhen-Xiong Jin ◽  
Xin-Yuan Liao ◽  
Wei-Wei Da ◽  
Yong-Jian Zhao ◽  
Xiao-Feng Li ◽  
...  

Abstract Summary Osthole has potential therapeutic applications due to its antiosteoporotic. Our study suggested that osthole attenuates osteoclast formation by stimulating the activation of β-catenin-OPG signaling and could be a potential agent to inhibit bone resorption. Introduction Osthole has potential therapeutic applications due to its antiosteoporotic. we performed study to test if OPG is the target gene of osthole-attenuated osteoclastogenesis. Methods In vivo, using 12-month-old male mice to evaluate the effect of osthole on bone mass. In vitro, Bone marrow stem cells (BMSCs) were isolated, extracted from 3-month-old C57BL/6J mice, 3-month-old β-cateninfx/fx mice, or 3-month-old OPG−/− mice and its littermates of OPG+/+ mice. Results we found that osthole significantly increased the gene and protein levels of OPG expression in primary BMSCs dose-dependently. The deletion of the OPG gene did not affect β-catenin expression and the deletion of the β-catenin gene inhibited OPG expression in BMSCs, which indicated that osthole stimulated the expression of OPG through activation of β-catenin signaling. Conclusion Osthole attenuates osteoclast formation by stimulating the activation of β-catenin-OPG signaling and could be a potential agent to inhibit bone resorption.

Author(s):  
Fanzi Wu ◽  
Boer Li ◽  
Xuchen Hu ◽  
Fanyuan Yu ◽  
Yu Shi ◽  
...  

The imbalance between bone formation and bone resorption causes osteoporosis, which leads to severe bone fractures. It is known that increases in osteoclast numbers and activities are the main reasons for increasing bone resorption. Although extensive studies have investigated the regulation of osteoclastogenesis of bone marrow macrophages (BMMs), new pharmacological avenues still need to be unveiled for clinical purpose. Wnt ligands have been widely demonstrated as stimulators of bone formation; however, the inhibitory effect of the Wnt pathway in osteoclastogenesis is largely unknown. Here, we demonstrate that Wnt7b, a potent Wnt ligand that enhances bone formation and increases bone mass, also abolishes osteoclastogenesis in vitro. Importantly, enforced expression of Wnt in bone marrow macrophage lineage cells significantly disrupts osteoclast formation and activity, which leads to a dramatic increase in bone mass. Mechanistically, Wnt7b impacts the glucose metabolic process and AKT activation during osteoclastogenesis. Thus, we demonstrate that Wnt7b diminishes osteoclast formation, which will be beneficial for osteoporosis therapy in the future.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhen-Xiong Jin ◽  
Xin-Yuan Liao ◽  
Wei-Wei Da ◽  
Yong-Jian Zhao ◽  
Xiao-Feng Li ◽  
...  

Abstract Introduction Osthole has a potential therapeutic application for anti-osteoporosis. The present study verified whether osthole downregulates osteoclastogenesis via targeting OPG. Methods In vivo, 12-month-old male mice were utilized to evaluate the effect of osthole on bone mass. In vitro, bone marrow stem cells (BMSCs) were isolated and extracted from 3-month-old OPG−/− mice and the littermates of OPG+/+ mice. Calvaria osteoblasts were extracted from 3-day-old C57BL/6J mice or 3-day-old OPG−/− mice and the littermates of OPG+/+ mice. Results Osthole significantly increased the gene and protein levels of OPG in primary BMSCs in a dose-dependent manner. The deletion of the OPG gene did not affect β-catenin expression. The deletion of the β-catenin gene inhibited OPG expression in BMSCs, indicating that osthole stimulates the expression of OPG via activation of β-catenin signaling. Conclusion Osthole attenuates osteoclast formation by stimulating the activation of β-catenin-OPG signaling and could be a potential drug for the senile osteoporosis.


2014 ◽  
Vol 28 (4) ◽  
pp. 546-553 ◽  
Author(s):  
Do Y. Soung ◽  
Judith Kalinowski ◽  
Sanjeev K. Baniwal ◽  
Christian E. Jacome-Galarza ◽  
Baruch Frenkel ◽  
...  

Abstract Excessive bone resorption is the cause of several metabolic bone diseases including osteoporosis. Thus, identifying factors that can inhibit osteoclast formation and/or activity may define new drug targets that can be used to develop novel therapies for these conditions. Emerging evidence demonstrates that the master regulator of hematopoiesis, Runx1, is expressed in preosteoclasts and may influence skeletal health. To examine the potential role of Runx1 in osteoclast formation and function, we deleted its expression in myeloid osteoclast precursors by crossing Runx1 floxed mice (Runx1F/F) with CD11b-Cre transgenic mice. Mice lacking Runx1 in preosteoclasts (CD11b-Cre;Runx1F/F) exhibited significant loss of femoral trabecular and cortical bone mass compared with that in Cre-negative mice. In addition, serum levels of collagen type 1 cross-linked C-telopeptide, a biomarker of osteoclast-mediated bone resorption, were significantly elevated in CD11b-Cre;Runx1F/F mice compared with those in Runx1F/F mice. Tartrate-resistant acid phosphatase–positive osteoclasts that differentiated from bone marrow cells of CD11b-Cre;Runx1F/F mice in vitro were larger, were found in greater numbers, and had increased bone resorbing activity than similarly cultured cells from Runx1F/F mice. CD11b-Cre;Runx1F/F bone marrow cells that were differentiated into osteoclasts in vitro also had elevated mRNA levels of osteoclast-related genes including vacuolar ATPase D2, cathepsin K, matrix metalloproteinase 9, calcitonin receptor, osteoclast-associated receptor, nuclear factor of activated T cells cytoplasmic 1, and cFos. These data indicate that Runx1 expression in preosteoclasts negatively regulates osteoclast formation and activity and contributes to overall bone mass.


2021 ◽  
Author(s):  
Zhen-Xiong Jin ◽  
Xin-Yuan Liao ◽  
Wei-Wei Da ◽  
Yong-Jian Zhao ◽  
Xiao-Feng Li ◽  
...  

Abstract Introduction Osthole has a potential therapeutic application for anti-osteoporosis. The present study verified whether osthole downregulates osteoclastogenesis via targeting OPG. Methods In vivo, 12-month-old male mice were utilized to evaluate the effect of osthole on bone mass. In vitro, bone marrow stem cells (BMSCs) were isolated and extracted from 3-month-old OPG-/- mice and the littermates of OPG+/+ mice. calvaria osteoblasts were extracted from 3-day-old C57BL/6J mice or 3-day-old OPG-/- mice and the littermates of OPG+/+ mice.Results Osthole significantly increased the gene and protein levels of OPG in primary BMSCs in a dose-dependent manner. The deletion of the OPG gene did not affect β-catenin expression. The deletion of the β-catenin gene inhibited OPG expression in BMSCs, indicating that osthole stimulates the expression of OPG via activation of β-catenin signaling.Conclusion Osthole attenuates osteoclast formation by stimulating the activation of β-catenin-OPG signaling and could be a potential drug for the senile osteoporosis.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2018 ◽  
Vol 19 (11) ◽  
pp. 3332 ◽  
Author(s):  
Barbara Siegenthaler ◽  
Chafik Ghayor ◽  
Bebeka Gjoksi-Cosandey ◽  
Nisarat Ruangsawasdi ◽  
Franz Weber

(1) Background: In an adult skeleton, bone is constantly renewed in a cycle of bone resorption, followed by bone formation. This coupling process, called bone remodeling, adjusts the quality and quantity of bone to the local needs. It is generally accepted that osteoporosis develops when bone resorption surpasses bone formation. Osteoclasts and osteoblasts, bone resorbing and bone forming cells respectively, are the major target in osteoporosis treatment. Inside bone and forming a complex network, the third and most abundant cells, the osteocytes, have long remained a mystery. Osteocytes are responsible for mechano-sensation and -transduction. Increased expression of the osteocyte-derived bone inhibitor sclerostin has been linked to estrogen deficiency-induced osteoporosis and is therefore a promising target for osteoporosis management. (2) Methods: Recently we showed in vitro and in vivo that NMP (N-Methyl-2-pyrrolidone) is a bioactive drug enhancing the BMP-2 (Bone Morphogenetic Protein 2) induced effect on bone formation while blocking bone resorption. Here we tested the effect of NMP on the expression of osteocyte-derived sclerostin. (3) Results: We found that NMP significantly decreased sclerostin mRNA and protein levels. In an animal model of osteoporosis, NMP prevented the estrogen deficiency-induced increased expression of sclerostin. (4) Conclusions: These results support the potential of NMP as a novel therapeutic compound for osteoporosis management, since it preserves bone by a direct interference with osteoblasts and osteoclasts and an indirect one via a decrease in sclerostin expression by osteocytes.


Nephrology ◽  
2015 ◽  
Vol 20 (9) ◽  
pp. 591-600 ◽  
Author(s):  
Juan He ◽  
Yan Wang ◽  
Xingyan Lu ◽  
Bei Zhu ◽  
Xiaohua Pei ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 362-372 ◽  
Author(s):  
Shuhao Liu ◽  
Yang Liu ◽  
Libo Jiang ◽  
Zheng Li ◽  
Soomin Lee ◽  
...  

BMP-2-induced migration of BMSCs can be inhibited by silencing CDC42 in vitro and in vivo.


2021 ◽  
Author(s):  
meng li ◽  
ning yang ◽  
li hao ◽  
wei zhou ◽  
lei li ◽  
...  

Abstract ObjectivesSteroid-induced osteoporosis (SIOP) is a secondary osteoporosis, which is a systemic bone disease characterized by low bone mass, bone microstructure damage, increased bone fragility, and easy fracture. However, the specific mechanism remains unclear. Glucocorticoid-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent programmed cell death that differs from apoptosis, cell necrosis, and autophagy, which can be induced by many factors. Herein, we aimed to explore whether glucocorticoids (GCs) cause ferroptosis in BMSCs and determine possible treatment pathways and mechanisms of action. Melatonin (MT), a hormone secreted by the pineal gland, displays strong antioxidant abilities to scavenge free radicals and alleviates ferroptosis in many tissues and organs. MethodsIn this study, we used high-dose dexamethasone (DEX) to observe whether glucocorticoids induced ferroptosis in BMSCs. We then assessed whether MT can inhibit the ferroptotic pathway, thereby providing early protection against GC-induced SIOP, and investigated the signaling pathways involved.ResultsIn vitro experiments showed that MT intervention significantly improved GC-induced ferroptosis in BMSCs and significantly improved SIOP in vivo. Pathway analysis showed that MT improves ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the anti-ferroptosis effect of MT, but after blocking the PI3K pathway, the effect of MT is weakened. Obviously, MT can protect against SIOP induced by GC. Notably, even after GC-induced ferroptosis begins, MT can confer protection against SIOP. ConclusionOur research confirms that GC-induced ferroptosis is closely related to SIOP. Melatonin can inhibit ferroptosis by activating the PI3K-AKT-mTOR signaling pathway, thereby reducing the occurrence of steroid-induced osteoporosis. Therefore, MT may provide a novel strategy for preventing and treating SIOP.


Sign in / Sign up

Export Citation Format

Share Document