scholarly journals Wnt7b Inhibits Osteoclastogenesis via AKT Activation and Glucose Metabolic Rewiring

Author(s):  
Fanzi Wu ◽  
Boer Li ◽  
Xuchen Hu ◽  
Fanyuan Yu ◽  
Yu Shi ◽  
...  

The imbalance between bone formation and bone resorption causes osteoporosis, which leads to severe bone fractures. It is known that increases in osteoclast numbers and activities are the main reasons for increasing bone resorption. Although extensive studies have investigated the regulation of osteoclastogenesis of bone marrow macrophages (BMMs), new pharmacological avenues still need to be unveiled for clinical purpose. Wnt ligands have been widely demonstrated as stimulators of bone formation; however, the inhibitory effect of the Wnt pathway in osteoclastogenesis is largely unknown. Here, we demonstrate that Wnt7b, a potent Wnt ligand that enhances bone formation and increases bone mass, also abolishes osteoclastogenesis in vitro. Importantly, enforced expression of Wnt in bone marrow macrophage lineage cells significantly disrupts osteoclast formation and activity, which leads to a dramatic increase in bone mass. Mechanistically, Wnt7b impacts the glucose metabolic process and AKT activation during osteoclastogenesis. Thus, we demonstrate that Wnt7b diminishes osteoclast formation, which will be beneficial for osteoporosis therapy in the future.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 629-629 ◽  
Author(s):  
Suzanne Lentzsch ◽  
Gulsum Anderson ◽  
Noriyoshi Kurihara ◽  
Tadashi Honjo ◽  
Judith Anderson ◽  
...  

Abstract CC-4047 (Actimid) is an immunomodulatory analog of thalidomide that has stronger anti-myeloma and anti-angiogenic activity than thalidomide, but its effects on human osteoclast lineage are unknown. Early osteoclast progenitors are of hematopoietic origin and progressively differentiate into mature bone resorbing multinucleated osteoclasts. We investigated the effects of CC-4047 and thalidomide on human osteoclastogenesis, using in vitro receptor activator of NFκ-B ligand/M-CSF stimulated culture system of bone marrow cells. Three weeks of treatment of primary bone marrow cultures with 100 μM CC-4047 decreased osteoclast formation accompanied by complete inhibition of bone resorption. Interestingly, osteoclast formation was also inhibited when cultures were treated with CC-4047 only for the first week (90% inhibition). In contrast, inhibitory effect was greatly diminished when the drug was given for only the last week (25% inhibition), indicating that inhibition of osteoclast formation is an early event. The inhibitory effect of CC-4047 on osteoclastogenesis was not induced by cell death, but by a shift of lineage commitment to granulocyte-CFU at the expense of GM-CFU that are osteoclast progenitors. Further studies revealed that this shift is mediated through down regulation of the transcription factor PU.1, which is critical for early osteoclast formation. In contrast to CC-4047, thalidomide was a significantly less potent inhibitor of osteoclast formation and bone resorption. These results provide the first evidence that CC-4047 blocks osteoclast differentiation at the early phase of osteoclastogenesis. Therefore, CC-4047 might be a valuable drug targeting both the tumor and osteoclastic activity in patients with multiple myeloma and potentially other diseases associated with the development of osteolytic lesions.


2014 ◽  
Vol 28 (4) ◽  
pp. 546-553 ◽  
Author(s):  
Do Y. Soung ◽  
Judith Kalinowski ◽  
Sanjeev K. Baniwal ◽  
Christian E. Jacome-Galarza ◽  
Baruch Frenkel ◽  
...  

Abstract Excessive bone resorption is the cause of several metabolic bone diseases including osteoporosis. Thus, identifying factors that can inhibit osteoclast formation and/or activity may define new drug targets that can be used to develop novel therapies for these conditions. Emerging evidence demonstrates that the master regulator of hematopoiesis, Runx1, is expressed in preosteoclasts and may influence skeletal health. To examine the potential role of Runx1 in osteoclast formation and function, we deleted its expression in myeloid osteoclast precursors by crossing Runx1 floxed mice (Runx1F/F) with CD11b-Cre transgenic mice. Mice lacking Runx1 in preosteoclasts (CD11b-Cre;Runx1F/F) exhibited significant loss of femoral trabecular and cortical bone mass compared with that in Cre-negative mice. In addition, serum levels of collagen type 1 cross-linked C-telopeptide, a biomarker of osteoclast-mediated bone resorption, were significantly elevated in CD11b-Cre;Runx1F/F mice compared with those in Runx1F/F mice. Tartrate-resistant acid phosphatase–positive osteoclasts that differentiated from bone marrow cells of CD11b-Cre;Runx1F/F mice in vitro were larger, were found in greater numbers, and had increased bone resorbing activity than similarly cultured cells from Runx1F/F mice. CD11b-Cre;Runx1F/F bone marrow cells that were differentiated into osteoclasts in vitro also had elevated mRNA levels of osteoclast-related genes including vacuolar ATPase D2, cathepsin K, matrix metalloproteinase 9, calcitonin receptor, osteoclast-associated receptor, nuclear factor of activated T cells cytoplasmic 1, and cFos. These data indicate that Runx1 expression in preosteoclasts negatively regulates osteoclast formation and activity and contributes to overall bone mass.


2009 ◽  
Vol 106 (17) ◽  
pp. 7149-7154 ◽  
Author(s):  
Roberto Tamma ◽  
Graziana Colaianni ◽  
Ling-ling Zhu ◽  
Adriana DiBenedetto ◽  
Giovanni Greco ◽  
...  

We report that oxytocin (OT), a primitive neurohypophyseal hormone, hitherto thought solely to modulate lactation and social bonding, is a direct regulator of bone mass. Deletion of OT or the OT receptor (Oxtr) in male or female mice causes osteoporosis resulting from reduced bone formation. Consistent with low bone formation, OT stimulates the differentiation of osteoblasts to a mineralizing phenotype by causing the up-regulation of BMP-2, which in turn controls Schnurri-2 and 3, Osterix, and ATF-4 expression. In contrast, OT has dual effects on the osteoclast. It stimulates osteoclast formation both directly, by activating NF-κB and MAP kinase signaling, and indirectly through the up-regulation of RANK-L. On the other hand, OT inhibits bone resorption by mature osteoclasts by triggering cytosolic Ca2+ release and NO synthesis. Together, the complementary genetic and pharmacologic approaches reveal OT as a novel anabolic regulator of bone mass, with potential implications for osteoporosis therapy.


2020 ◽  
Author(s):  
Zhen-Xiong Jin ◽  
Xin-Yuan Liao ◽  
Wei-Wei Da ◽  
Yong-Jian Zhao ◽  
Xiao-Feng Li ◽  
...  

Abstract Summary Osthole has potential therapeutic applications due to its antiosteoporotic. Our study suggested that osthole attenuates osteoclast formation by stimulating the activation of β-catenin-OPG signaling and could be a potential agent to inhibit bone resorption. Introduction Osthole has potential therapeutic applications due to its antiosteoporotic. we performed study to test if OPG is the target gene of osthole-attenuated osteoclastogenesis. Methods In vivo, using 12-month-old male mice to evaluate the effect of osthole on bone mass. In vitro, Bone marrow stem cells (BMSCs) were isolated, extracted from 3-month-old C57BL/6J mice, 3-month-old β-cateninfx/fx mice, or 3-month-old OPG−/− mice and its littermates of OPG+/+ mice. Results we found that osthole significantly increased the gene and protein levels of OPG expression in primary BMSCs dose-dependently. The deletion of the OPG gene did not affect β-catenin expression and the deletion of the β-catenin gene inhibited OPG expression in BMSCs, which indicated that osthole stimulated the expression of OPG through activation of β-catenin signaling. Conclusion Osthole attenuates osteoclast formation by stimulating the activation of β-catenin-OPG signaling and could be a potential agent to inhibit bone resorption.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Gong ◽  
Xingren Chen ◽  
Tianshu Shi ◽  
Xiaoyan Shao ◽  
Xueying An ◽  
...  

As the society is aging, the increasing prevalence of osteoporosis has generated huge social and economic impact, while the drug therapy for osteoporosis is limited due to multiple targets involved in this disease. Zhuangguguanjie formulation (ZG) is extensively used in the clinical treatment of bone and joint diseases, but the underlying mechanism has not been fully described. This study aimed to examine the therapeutic effect and potential mechanism of ZG on postmenopausal osteoporosis. The ovariectomized (OVX) mice were treated with normal saline or ZG for 4 weeks after ovariectomy following a series of analyses. The bone mass density (BMD) and trabecular parameters were examined by micro-CT. Bone remodeling was evaluated by the bone histomorphometry analysis and ELISA assay of bone turnover biomarkers in serum. The possible drug–disease common targets were analyzed by network pharmacology. To predict the potential biological processes and related pathways, GO/KEGG enrichment analysis was performed. The effects of ZG on the differentiation phenotype of osteoclasts and osteoblasts and the predicted pathway were verified in vitro. The results showed that ZG significantly improved the bone mass and micro-trabecular architecture in OVX mice compared with untreated OVX mice. ZG could promote bone formation and inhibit bone resorption to ameliorate ovariectomy-induced osteoporosis as evidenced by increased number of osteoblast (N.Ob/Tb.Pm) and decreased number of osteoclast (N.Oc/Tb.Pm) in treated group compared with untreated OVX mice. After identifying potential drug–disease common targets by network pharmacology, GO enrichment analysis predicted that ZG might affect various biological processes including osteoblastic differentiation and osteoclast differentiation. The KEGG enrichment analysis suggested that PI3K/Akt and mTOR signaling pathways could be the possible pathways. Furthermore, the experiments in vitro validated our findings. ZG significantly down-regulated the expression of osteoclast differentiation markers, reduced osteoclastic resorption, and inhibited the phosphorylation of PI3K/Akt, while ZG obviously up-regulated the expression of osteogenic biomarkers, promoted the formation of calcium nodules, and hampered the phosphorylation of 70S6K1/mTOR, which can be reversed by the corresponding pathway activator. Thus, our study suggested that ZG could inhibit the PI3K/Akt signaling pathway to reduce osteoclastic bone resorption as well as hamper the mTORC1/S6K1 signaling pathway to promote osteoblastic bone formation.


1999 ◽  
Vol 112 (21) ◽  
pp. 3657-3666 ◽  
Author(s):  
T. Laitala-Leinonen ◽  
C. Lowik ◽  
S. Papapoulos ◽  
H.K. Vaananen

The role of proton transport and production in osteoclast differentiation was studied in vitro by inhibiting the transcription/translation of carbonic anhydrase II (CA II) and vacuolar H(+)-ATPase (V-ATPase) by antisense RNA molecules. Antisense RNAs targeted against CA II, or the 16 kDa or 60 kDa subunit of V-ATPase were used to block the expression of the specific proteins. A significant decrease in bone resorption rate and TRAP-positive osteoclast number was seen in rat bone marrow cultures and fetal mouse metacarpal cultures after antisense treatment. Intravacuolar acidification in rat bone marrow cells was also significantly decreased after antisense treatment. The CA II antisense RNA increased the number of TRAP-positive mononuclear cells, suggesting inhibition of osteoclast precursor fusion. Antisense molecules decreased the number of monocytes and macrophages, but increased the number of granulocytes in marrow cultures. GM-CSF, IL-3 and IL-6 were used to stimulate haematopoietic stem cell differentiation. The 16 kDa V-ATPase antisense RNA abolished the stimulatory effect of GM-CSF, IL-3 and IL-6 on TRAP-positive osteoclast formation, but did not affect the formation of monocytes and macrophages after IL-3 treatment, or the formation of granulocytes after IL-6 treatment. These results suggest that CA II and V-ATPase are needed, not only for the actual resorption, but also for osteoclast formation in vitro.


2020 ◽  
Author(s):  
Tao Huang ◽  
Congyun Zhao ◽  
Yi Zhao ◽  
Yuan Zhou ◽  
Lei Wang ◽  
...  

Abstract To investigate the suppressive function of LY900009, a potent-secretase inhibitor, on RANKL-induced osteoclastogenesis. The cytotoxicity of LY900009 was evaluated. The suppressive effect and possible molecular mechanism of LY900009 on RANKL-induced osteoclastogenesis was evaluated both in vitro and in vivo. The IC50 of LY900009 was 2.93 mM. LY900009 treatment at different doses (100 nM, 200 nM, and 400 nM) effectively reduced osteoclast formation (number and arear) in a dose-dependent manner. The qPCR result shows that LY900009 attenuates RANKL-induced osteoclast formation and NFATc1 protein expression. The in vivo experiments demonstrated the inhibitory effect of LY900009 on LPS-induced bone resorption. LY900009 could potently inhibit osteoclastogenesis and bone resorption by down-regulating Notch/MAPK/Akt - mediated NFATc1 reduction in vitro. In accordance with the in vitro observations, we confirmed that LY900009 attenuated LPS-induced osteolysis in mice. In conclusion, our findings indicate that Notch was a potential therapeutic target which could be used for osteolytic diseases treatment.


2020 ◽  
Vol 21 (17) ◽  
pp. 6120
Author(s):  
Yasuhiko Nara ◽  
Hideki Kitaura ◽  
Saika Ogawa ◽  
Wei-Ren Shen ◽  
Jiawei Qi ◽  
...  

Osteoporosis morphology is characterized by bone resorption and decreases in micro-architecture parameters. Anti-osteoporosis therapy targets osteoclasts because bone resorption is a unique function of osteoclasts. Anti-c-fms antibodies against the receptor for macrophage colony-stimulating factor (M-CSF) inhibit osteoclast formation and bone resorption in vitro and in vivo. However, the effect of anti-c-fms antibodies on bone resorption in ovariectomized (OVX) mice is unknown. In this study, we evaluated the effect of anti-c-fms antibodies on osteoclast formation and bone resorption in osteoblast–osteoclast precursor co-culture in vitro and in OVX mice. Osteoblast and osteoclast precursor co-cultures treated with anti-c-fms antibodies showed significantly inhibited osteoclast formation, while cultures without anti-c-fms antibody treatment showed osteoclast formation. However, anti-c-fms antibodies did not change the receptor activator of nuclear factor kappa-B ligand (RANKL) or osteoprotegrin (OPG) expression during osteoblast and osteoclast differentiation in vitro. These results indicate that anti-c-fms antibodies directly affected osteoclast formation from osteoclast precursors in co-culture. OVX mice were treated with intraperitoneal injections of anti-c-fms antibody. The trabecular bone structure of the femur was assessed by micro-computer tomography. The anti-c-fms antibody inhibited osteoclast formation and bone loss compared with PBS-treated OVX mice. These results indicate potential for the therapeutic application of anti-c-fms antibodies for postmenopausal osteoporosis.


2004 ◽  
Vol 164 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Romain Dacquin ◽  
Rachel A. Davey ◽  
Catherine Laplace ◽  
Régis Levasseur ◽  
Howard A. Morris ◽  
...  

Amylin is a member of the calcitonin family of hormones cosecreted with insulin by pancreatic β cells. Cell culture assays suggest that amylin could affect bone formation and bone resorption, this latter function after its binding to the calcitonin receptor (CALCR). Here we show that Amylin inactivation leads to a low bone mass due to an increase in bone resorption, whereas bone formation is unaffected. In vitro, amylin inhibits fusion of mononucleated osteoclast precursors into multinucleated osteoclasts in an ERK1/2-dependent manner. Although Amylin +/− mice like Amylin-deficient mice display a low bone mass phenotype and increased bone resorption, Calcr +/− mice display a high bone mass due to an increase in bone formation. Moreover, compound heterozygote mice for Calcr and Amylin inactivation displayed bone abnormalities observed in both Calcr +/− and Amylin +/− mice, thereby ruling out that amylin uses CALCR to inhibit osteoclastogenesis in vivo. Thus, amylin is a physiological regulator of bone resorption that acts through an unidentified receptor.


2019 ◽  
Author(s):  
Philippa A Hulley ◽  
Ioanna Papadimitriou-Olivgeri ◽  
Helen J Knowles

AbstractThe link between bone and blood vessels is regulated by hypoxia and the hypoxia-inducible transcription factor, HIF, which drives both osteogenesis and angiogenesis. The recent clinical approval of PHD enzyme inhibitors, which stabilise HIF protein, introduces the potential for a new clinical strategy to treat osteolytic conditions such as osteoporosis, osteonecrosis and skeletal fracture and non-union. However, bone-resorbing osteoclasts also play a central role in bone remodelling and pathological osteolysis and HIF promotes osteoclast activation and bone loss in vitro. It is therefore likely that the final outcome of PHD enzyme inhibition in vivo would be mediated by a balance between increased bone formation and increased bone resorption. It is essential that we improve our understanding of the effects of HIF on osteoclast formation and function, and consider the potential contribution of inhibitory interactions with other musculoskeletal cells.The PHD enzyme inhibitor FG-4592 stabilised HIF protein and stimulated osteoclast-mediated bone resorption, but inhibited differentiation of human CD14+ monocytes into osteoclasts. Formation of osteoclasts in a more physiologically relevant 3D collagen gel did not affect the sensitivity of osteoclastogenesis to FG-4592, but increased sensitivity to reduced concentrations of RANKL. Co-culture with osteoblasts amplified inhibition of osteoclastogenesis by FG-4592, whether the osteoblasts were proliferating, differentiating or in the presence of exogenous M-CSF and RANKL. Osteoblast co-culture dampened the ability of high concentrations of FG-4592 to increase bone resorption.This data provides support for the therapeutic use of PHD enzyme inhibitors to improve bone formation and/or reduce bone loss for treatment of osteolytic pathologies, and indicates that FG-4592 might also act to inhibit the formation and activity of the osteoclasts that drive osteolysis.


Sign in / Sign up

Export Citation Format

Share Document