scholarly journals Power Generation by Water Transpiration from Microporous Alumina

Author(s):  
Manpreet Kaur ◽  
Satoshi Ishii ◽  
Ryusuke Nozaki ◽  
Tadaaki Nagao

Abstract Hydropower generation has been the most developed sustainable energy source that is based on the electromagnetic transduction of the gravitational potential energy but is only realized through elaborate construction of water dam and not yet suitable for small-scale energy harvesters. Here, we report that wetting and evaporation of water from a small block of porous alumina can generate electrical current in the direction of water transpiration. This induced current in microporous alumina is associated with the mass transport of water accompanying the accumulated charge near the negatively charged surface of the alumina pore. Without any pre-treatment or additives, once water evaporation commences, a 3×3 cm2 piece of alumina generates an open-circuit voltage of up to 0.27 V. Possible influence on power generation of the water-insulator interface and naturally available protons in water are discussed with respect to experimental results. Total output of this novel microporous ceramic electric generator can be scaled up and could be used for stand-alone energy harvesters or power generators in self-powered off-grid agricultural/ industrial sensors.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manpreet Kaur ◽  
Satoshi Ishii ◽  
Ryusuke Nozaki ◽  
Tadaaki Nagao

AbstractTraditional hydropower generation is one of the most sustainable energy sources; however, the local environmental impact of hydroelectric dams and reservoirs is serious, and hydroelectric power requires high-cost turbines and generators. Because these installations utilize gravitational potential energy of massive volumes of falling water, this sort of hydropower generation is unsuitable for ubiquitous, small-scale energy production. Here, we report that wetting and evaporation of pure water from a tiny block of porous alumina generates electrical current in the direction of water transpiration. The current induced in microporous alumina is associated with mass transport of water accompanying ions that accumulate near the negatively charged surface of alumina pores. Without any pre-treatment or additives, once evaporation commences, a 3 × 3 cm2 piece of alumina can generate an open-circuit voltage as large as 0.27 V. The power generation scheme we propose here is simple, clean, and versatile, and it can be employed anywhere, as it utilizes only spontaneous capillary action of water and Coulombic interaction at the alumina-water interface, without requiring any input of heat or light.


2021 ◽  
Author(s):  
Manpreet Kaur ◽  
Satoshi Ishii ◽  
Ryusuke Nozaki ◽  
Tadaaki Nagao

Abstract Traditional hydropower generation is one of the most sustainable energy sources; however, the local environmental impact of hydroelectric dams and reservoirs is serious, and hydroelectric power requires high-cost turbines and generators. Because these installations utilize gravitational potential energy of massive volumes of falling water, this sort of hydropower generation is unsuitable for ubiquitous, small-scale energy production. Here, we report that wetting and evaporation of pure water from a tiny block of porous alumina generates electrical current in the direction of water transpiration. The current induced in microporous alumina is associated with mass transport of water accompanying ions that accumulate near the negatively charged surface of alumina pores. Without any pre-treatment or additives, once evaporation commences, a 3×3 cm2 piece of alumina can generate an open-circuit voltage as large as 0.27 V. The power generation scheme we propose here is simple, clean, and versatile, and it can be employed anywhere, as it utilizes only spontaneous capillary action of water and Coulombic interaction at the alumina-water interface, without requiring any input of heat or light.


Author(s):  
Akhtar Razali ◽  
Fadhlur Rahman ◽  
Syaiful Azlan ◽  
Mohd Razali Hanipah ◽  
Mohd Azri Hizami

2016 ◽  
Vol 28 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Zhengbao Yang ◽  
Jean Zu ◽  
Jun Luo ◽  
Yan Peng

Piezoelectric energy harvesters have great potential for achieving inexhaustible power supply for small-scale electronic devices. However, the insufficient power-generation capability and the narrow working bandwidth of traditional energy harvesters have significantly hindered their adoption. To address these issues, we propose a nonlinear compressive-mode piezoelectric energy harvester. We embedded a multi-stage force amplification mechanism into the energy harvester, which greatly improved its power-generation capability. In this article, we describe how we first established an analytical model to study the force amplification effect. A lumped-parameter model was then built to simulate the strong nonlinear responses of the proposed energy harvester. A prototype was fabricated which demonstrated a superior power output of 30 mW under an excitation of 0.3 g ([Formula: see text] m/s2). We discuss at the end the effect of geometric parameters that are influential to the performance. The proposed energy harvester is suitable to be used in low-frequency weak-excitation environments for powering wireless sensors.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yixuan Lin ◽  
Yuqiong Zhang ◽  
Fan Zhang ◽  
Meining Zhang ◽  
Dalong Li ◽  
...  

AbstractThe electroactive β-phase in Poly (vinylidene fluoride, PVDF) is the most desirable conformation due to its highest pyro- and piezoelectric properties, which make it feasible to be used as flexible sensors, wearable electronics, and energy harvesters etc. In this study, we successfully developed a method to obtain high-content β-phase PVDF films and nanofiber meshes by mechanical stretching and electric spinning. The phase transition process and pyro- and piezoelectric effects of stretched films and nanofiber meshes were characterized by monitoring the polarized light microscopy (PLM) images, outputting currents and open-circuit voltages respectively, which were proved to be closely related to stretching ratio (λ) and concentrations. This study could expand a new route for the easy fabrication and wide application of PVDF films or fibers in wearable electronics, sensors, and energy harvesting devices.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


2021 ◽  
Vol 1051 (1) ◽  
pp. 012054
Author(s):  
N A Najwa Annuar ◽  
N Kamarulzaman ◽  
Z F M Shadzalli ◽  
I H I Abdullah ◽  
P Y Liew ◽  
...  

Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


Author(s):  
Segen F. Estefen ◽  
Paulo Roberto da Costa ◽  
Eliab Ricarte ◽  
Marcelo M. Pinheiro

Wave energy is a renewable and non-polluting source and its use is being studied in different countries. The paper presents an overview on the harnessing of energy from waves and the activities associated with setting up a plant for extracting energy from waves in Port of Pecem, on the coast of Ceara State, Brazil. The technology employed is based on storing water under pressure in a hyperbaric chamber, from which a controlled jet of water drives a standard turbine. The wave resource at the proposed location is presented in terms of statistics data obtained from previous monitoring. The device components are described and small scale model tested under regular waves representatives of the installation region. Based on the experimental results values of prescribed pressures are identified in order to optimize the power generation.


Sign in / Sign up

Export Citation Format

Share Document