scholarly journals Effects of Urban Topography and Traffic Emissions of Ultrafine Particulate Matter, Reactive Nitrogen Species, and Ozone in Greater Los Angeles Area

Author(s):  
Agam Mohan Singh Bhatia

Abstract Traffic-related air pollution (TRAP) is a major source of pollutant exposure in urban areas. Particulate species concentrations have drastically increased over the past decade and little has been done to understand them further. This study aims to further research in atmospheric and environmental sciences and influence decisions made regarding urban climate policy by furthering the understanding of UFP size and concentrations. It will lead to a better understanding of dangerous particles and act as a basis for future studies that aim to further understand or mitigate anthropogenic ultrafine particle emissions. This can help policymakers design and implement better, more effective policies that aim to reduce traffic-related air pollution exposure in urban areas.

Author(s):  
Kim N. Dirks ◽  
Judith Y. T. Wang ◽  
Amirul Khan ◽  
Christopher Rushton

Walking School Buses (WSBs) provide a safe alternative to being driven to school. Children benefit from the contribution the exercise provides towards their daily exercise target, it gives children practical experience with respect to road safety and helps to relieve traffic congestion around the entrance to their school. Walking routes are designed largely based in road safety considerations, catchment need and the availability of parent support. However, little attention is given to the air pollution exposure experienced by children during their journey to school, despite the commuting microenvironment being an important contributor to a child’s daily air pollution exposure. This study aims to quantify the air pollution exposure experienced by children walking to school and those being driven by car. A school was chosen in Bradford, UK. Three adult participants carried out the journey to and from school each carrying a P-Trak ultrafine particle (UFP) count monitor. One participant travelled the journey to school by car while the other two walked, each on opposite sides of the road for the majority of the journey. Data collection was carried out over a period of two weeks, for a total of five journeys to school in the morning and five on the way home at the end of the school day. Results of the study suggest that car commuters experience lower levels of air pollution dose due to lower exposures and reduced commute times. The largest reductions in exposure for pedestrians can be achieved by avoiding close proximity to traffic queuing up to intersections, and, where possible, walking on the side of the road opposite the traffic, especially during the morning commuting period. Major intersections should also be avoided as they were associated with peak exposures. Steps to ensure that the phasing of lights is optimized to minimize pedestrian waiting time would also help reduce exposures. If possible, busy roads should be avoided altogether. By the careful design of WSB routes, taking into account air pollution, children will be able to experience the benefits that walking to school brings while minimizing their air pollution exposure during their commute to and from school.


1973 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Hanns F. Hartmann

The gases comprising the atmosphere are in dynamic balance both with the oceans and the dry land of the continents. The mechanisms which operate to keep the atmospheric content of oxygen, nitrogen, carbon and sulphur constant are now well defined. The capacity of the system to absorb excess gaseous impurities is adequate on a global basis with the exception of carbon dioxide.Air pollution is thus a local problem resulting from the overloading of a particular air space with contaminants. The greater part of air pollution is due to the combustion of fossil fuels. Ease of control and virtual freedom from sulphur give natural gas an advantage over liquid and solid fuels as far as air pollution control is concerned. Oxides of nitrogen are produced when natural gas is burned but in smaller quantities than in the combustion of other fuels. In high capacity industrial gas burners where oxides of nitrogen may be generated in large quantities control is easier and can achieve a lower level of oxides of nitrogen than is the case with other fuels.The large scale use of natural gas to solve the air pollution problems of Pittsburgh, Los Angeles and many other cities is proof of the usefulness of gas in this respect. Specialised applications include use in incinerators and industrial after burners. Advances in removal of impurities from fuels and of air pollutants from products of combustion combined with rising gas prices will in time displace gas from its preeminent position in air pollution control. It is, however, likely to retain its advantage in small installations and in dense urban areas. In public and private transport its use will probably remain limited.While technological developments in the distant future may eventually displace fossil fuels, gas will have a large share of the fuel market until that day comes and will contribute effectively to the control of air pollution.


Author(s):  
Kim Dirks ◽  
Jennifer Salmond ◽  
Nicholas Talbot

Walking School Buses (WSBs), organized groups for children to walk to school under the supervision of adults, help reduce traffic congestion and contribute towards exercise. Routes are based largely on need, traffic safety and travel time, with exposure to air pollution not generally considered. This paper explores whether reductions in exposure can be achieved based on the side of the road travelled using data collected in Auckland, New Zealand. Exposure to air pollution was measured for a 25-min commute consisting of a 10-min segment along a quiet cul-de-sac and a 15-min segment along a main arterial road with traffic congestion heavier in one direction. Two participants were each equipped with a portable P-Trak ultrafine particle monitor and a portable Langan carbon monoxide monitor, and walked the route on opposite sides of the road simultaneously, for both morning and afternoon, logging 10-s data. The results suggest that pedestrians travelling on the footpath next to the less congested side of the road in the morning avoid many short-term peaks in concentration and experience significantly lower mean exposures than those travelling on the footpath next to the more congested side. Significant reductions in air pollution exposure could be made for children by taking into account the side of the road in WSB route design.


2021 ◽  
Vol 3 ◽  
Author(s):  
Jyothi S. Menon ◽  
Richa Sharma

The urban population is subjected to multiple exposures of air pollution and heat stress and bear severe impacts on their health and well-being in terms of premature deaths and morbidity. India tops the list of countries with the highest air pollution exposure and hosts some of the most polluted cities in the world. Similarly, Indian cities are highly vulnerable to extreme heat with the frequency of heatwaves expected to increase several-fold in urban areas in India. It is reported that mitigating air pollution could reduce the rural-urban difference of the incoming radiation thus resulting in mitigation of the urban heat island effect. Since the interaction between urban heat and air pollution is dynamic and complex, both these factors should be considered by the urban authorities in designing mitigation strategies. Given the multi-functional nature and cost-effectiveness of Nature-Based Solutions (NbS), they appear to be the most appropriate remedy for environmental issues of urban areas, particularly in developing countries. In addition to improving public health (through the reduction in air pollution and urban heat), NbS also provides a wide range of co-benefits such as reducing energy cost and health costs as well as conservation of biodiversity. This review is an attempt to understand the potentials of NbS in co-mitigating air pollution and urban heat in Indian cities. A framework for the planning and design of NbS in Indian cities is also proposed based on the review that could help city planners and decision-makers in addressing these two issues in an integrated manner.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lucio G. Costa ◽  
Toby B. Cole ◽  
Jacki Coburn ◽  
Yu-Chi Chang ◽  
Khoi Dao ◽  
...  

In addition to increased morbidity and mortality caused by respiratory and cardiovascular diseases, air pollution may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is a mixture comprised of several components, of which ultrafine particulate matter (UFPM; <100 nm) is of much concern, as these particles can enter the circulation and distribute to most organs, including the brain. A major constituent of ambient UFPM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution may lead to neurotoxicity. In addition to a variety of behavioral abnormalities, two prominent effects caused by air pollution are oxidative stress and neuroinflammation, which are seen in both humans and animals and are confirmed byin vitrostudies. Among factors which can affect neurotoxic outcomes, age is considered the most relevant. Human and animal studies suggest that air pollution (and DE) may cause developmental neurotoxicity and may contribute to the etiology of neurodevelopmental disorders, including autistic spectrum disorders. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies.


2021 ◽  
Vol 1 (1) ◽  
pp. 74-79
Author(s):  
Ira Leifer ◽  
Michael T. Kleinman ◽  
Donald Blake ◽  
David Tratt ◽  
Charlotte Marston

Air pollution, particularly fine and ultrafine particulate matter aerosols, underlies a wide range of communicable and non-communicable disease affecting many systems including the cardiopulmonary and immune systems, and arises primarily from transportation and industry. A number of air pollution driven diseases also are Covid19 comorbidities. Thus, a number of studies on air pollution exposure, particularly particulate matter, strongly indicate air pollution is an important underlying factor in Covid19 transmission, severity, and mortality. This suggests that air pollution from natural sources, particularly wildfires, could play a role in the Covid19 pandemic. We tested this hypothesis on three wildfire smoke events in Orange County, CA, each of which was followed by Covid19 case increases after an approximately one-week lag. This lag was consistent with combined incubation time and testing/reporting times. Moreover, the three events suggest a dose dependency. The wildfire comorbidity hypothesis implies that at-risk-populations should reduce smoke exposure from wildfires, as well as indoors from biomass burning for heating, cooking, and aesthetic purposes.


2006 ◽  
Vol 40 (37) ◽  
pp. 7205-7214 ◽  
Author(s):  
C BORREGO ◽  
O TCHEPEL ◽  
A COSTA ◽  
H MARTINS ◽  
J FERREIRA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document