scholarly journals Southern Ocean surface pressure and winds during the 20th century from proxy-data assimilation

Author(s):  
Gemma O'Connor ◽  
Eric Steig ◽  
Gregory Hakim

Abstract Winds and pressure over the Southern Ocean are critical to many aspects of the climate system, including ocean circulation and carbon uptake, sea ice extent, and the mass balance of Antarctica. However, reliable climate data around Antarctica begin only in 1979. Here, we reconstruct sea level pressure and zonal surface wind anomalies over the Southern Ocean through the 20th century, using data assimilation with a global database of paleoclimate proxy records. There is very good agreement between the reconstructions and satellite-based reanalysis products both at the large scale and in the smaller Amundsen Sea, a key region of West Antarctica where rapid glacier retreat has occurred in recent decades. The reconstructions show insignificant trends in the zonal-average circumpolar westerlies, but a significant strengthening in mid-latitude Pacific westerlies, associated with a deepening of the Amundsen Sea Low, beginning well before the satellite era. The mean zonal-wind trend along the continental shelf break in the Amundsen Sea is easterly through the 20th century, contrasting with previous results that have suggested that glacier change in this region can be attributed to strengthening westerlies. Our reconstructions underscore the value of using paleoclimate data assimilation methods in assessing historical changes in Southern Hemisphere climate and suggest that zonally asymmetric features of atmospheric circulation may be key for understanding high-latitude climate and associated ice-sheet changes.

2020 ◽  
Vol 33 (15) ◽  
pp. 6555-6581 ◽  
Author(s):  
R. L. Beadling ◽  
J. L. Russell ◽  
R. J. Stouffer ◽  
M. Mazloff ◽  
L. D. Talley ◽  
...  

AbstractThe air–sea exchange of heat and carbon in the Southern Ocean (SO) plays an important role in mediating the climate state. The dominant role the SO plays in storing anthropogenic heat and carbon is a direct consequence of the unique and complex ocean circulation that exists there. Previous generations of climate models have struggled to accurately represent key SO properties and processes that influence the large-scale ocean circulation. This has resulted in low confidence ascribed to twenty-first-century projections of the state of the SO from previous generations of models. This analysis provides a detailed assessment of the ability of models contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to represent important observationally based SO properties. Additionally, a comprehensive overview of CMIP6 performance relative to CMIP3 and CMIP5 is presented. CMIP6 models show improved performance in the surface wind stress forcing, simulating stronger and less equatorward-biased wind fields, translating into an improved representation of the Ekman upwelling over the Drake Passage latitudes. An increased number of models simulate an Antarctic Circumpolar Current (ACC) transport within observational uncertainty relative to previous generations; however, several models exhibit extremely weak transports. Generally, the upper SO remains biased warm and fresh relative to observations, and Antarctic sea ice extent remains poorly represented. While generational improvement is found in many metrics, persistent systematic biases are highlighted that should be a priority during model development. These biases need to be considered when interpreting projected trends or biogeochemical properties in this region.


Author(s):  
John Turner ◽  
J. Scott Hosking ◽  
Thomas J. Bracegirdle ◽  
Gareth J. Marshall ◽  
Tony Phillips

In contrast to the Arctic, total sea ice extent (SIE) across the Southern Ocean has increased since the late 1970s, with the annual mean increasing at a rate of 186×10 3  km 2 per decade (1.5% per decade; p <0.01) for 1979–2013. However, this overall increase masks larger regional variations, most notably an increase (decrease) over the Ross (Amundsen–Bellingshausen) Sea. Sea ice variability results from changes in atmospheric and oceanic conditions, although the former is thought to be more significant, since there is a high correlation between anomalies in the ice concentration and the near-surface wind field. The Southern Ocean SIE trend is dominated by the increase in the Ross Sea sector, where the SIE is significantly correlated with the depth of the Amundsen Sea Low (ASL), which has deepened since 1979. The depth of the ASL is influenced by a number of external factors, including tropical sea surface temperatures, but the low also has a large locally driven intrinsic variability, suggesting that SIE in these areas is especially variable. Many of the current generation of coupled climate models have difficulty in simulating sea ice. However, output from the better-performing IPCC CMIP5 models suggests that the recent increase in Antarctic SIE may be within the bounds of intrinsic/internal variability.


2018 ◽  
Vol 10 (8) ◽  
pp. 1306 ◽  
Author(s):  
Wesley Berg ◽  
Rachael Kroodsma ◽  
Christian Kummerow ◽  
Darren McKague

An intercalibrated Fundamental Climate Data Record (FCDR) of brightness temperatures (Tb) has been developed using data from a total of 14 research and operational conical-scanning microwave imagers. This dataset provides a consistent 30+ year data record of global observations that is well suited for retrieving estimates of precipitation, total precipitable water, cloud liquid water, ocean surface wind speed, sea ice extent and concentration, snow cover, soil moisture, and land surface emissivity. An initial FCDR was developed for a series of ten Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) instruments on board the Defense Meteorological Satellite Program spacecraft. An updated version of this dataset, including additional NASA and Japanese sensors, has been developed as part of the Global Precipitation Measurement (GPM) mission. The FCDR development efforts involved quality control of the original data, geolocation corrections, calibration corrections to account for cross-track and time-dependent calibration errors, and intercalibration to ensure consistency with the calibration reference. Both the initial SSMI(S) and subsequent GPM Level 1C FCDR datasets are documented, updated in near real-time, and publicly distributed.


2021 ◽  
Author(s):  
Tristan Vadsaria ◽  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Takashi Obase ◽  
Wing-Le Chan ◽  
...  

&lt;p&gt;Southern Ocean sea ice and oceanic fronts are known to play an important role on the climate system, carbon cycles, bottom ocean circulation, and Antarctic ice sheet. However, many models of the previous Past-climate Model Intercomparison Project (PMIP) underestimated sea-ice extent (SIE) for the Last Glacial Maximum (LGM)(Roche et al., 2012; Marzocchi and Jensen, 2017), mainly because of surface bias (Flato et al., 2013) that may have an impact on mean ocean temperature (MOT). Indeed, recent studies further suggest an important link between Southern Ocean sea ice and mean ocean temperature (Ferrari et al., 2014; Bereiter et al., 2018 among others). Misrepresent the Antarctic sea-ice extent could highly impact deep ocean circulation, the heat transport and thus the MOT. In this study, we will stress the relationship between the distribution of Antarctic sea-ice extent and the MOT through the analysis of the PMIP3 and PMIP4 exercise and by using a set of MIROC models. To date, the latest version of MIROC improve its representation of the LGM Antarctic sea-ice extent, affecting the deep circulation and the MOT distribution (Sherriff-Tadano et al., under review).&lt;/p&gt;&lt;p&gt;Our results show that available PMIP4 models have an overall improvement in term of LGM sea-ice extent compared to PMIP3, associated to colder deep and bottom ocean temperature. Focusing on MIROC (4m) models, we show that models accounting for Southern Ocean sea-surface temperature (SST) bias correction reproduce an Antarctic sea-ice extent, 2D-distribution, and seasonal amplitude in good agreement with proxy-based data. Finally, using PMIP-MIROC analyze, we show that it exists a relationship between the maximum SIE and the MOT, modulated by the Antarctic intermediate and bottom waters.&lt;/p&gt;


2014 ◽  
Vol 142 (11) ◽  
pp. 4187-4206 ◽  
Author(s):  
Shu-Ya Chen ◽  
Tae-Kwon Wee ◽  
Ying-Hwa Kuo ◽  
David H. Bromwich

Abstract The impact of global positioning system (GPS) radio occultation (RO) data on an intense synoptic-scale storm that occurred over the Southern Ocean in December 2007 is evaluated, and a synoptic explanation of the assessed impact is offered. The impact is assessed by using the three-dimensional variational data assimilation scheme (3DVAR) of the Weather Research and Forecasting (WRF) Model Data Assimilation system (WRFDA), and by comparing two experiments: one with and the other without assimilating the refractivity data from four different RO missions. Verifications indicate significant positive impacts of the RO data in various measures and parameters as well as in the track and intensity of the Antarctic cyclone. The analysis of the atmospheric processes underlying the impact shows that the assimilation of the RO data yields substantial improvements in the large-scale circulations that in turn control the development of the Antarctic storm. For instance, the RO data enhanced the strength of a 500-hPa trough over the Southern Ocean and prevented the katabatic flow near the coast of East Antarctica from an overintensification. This greatly influenced two low pressure systems of a comparable intensity, which later merged together and evolved into the major storm. The dominance of one low over the other in the merger dramatically changed the track, intensity, and structure of the merged storm. The assimilation of GPS RO data swapped the dominant low, leading to a remarkable improvement in the subsequent storm’s prediction.


2019 ◽  
Author(s):  
Akitomo Yamamoto ◽  
Ayako Abe-Ouchi ◽  
Rumi Ohgaito ◽  
Akinori Ito ◽  
Akira Oka

Abstract. Increased accumulation of respired carbon in the deep ocean associated with enhanced efficiency of the biological carbon pump is thought to be a key mechanism of glacial CO2 drawdown. Despite greater oxygen solubility due to sea surface cooling, recent quantitative and qualitative proxy data show glacial deep-water deoxygenation, reflecting increased accumulation of respired carbon. However, the mechanisms of deep-water deoxygenation and contribution from the biological pump to glacial CO2 drawdown have remained unclear. In this study, we report the significance of iron fertilization from glaciogenic dust for glacial CO2 decrease and deep-water deoxygenation using our numerical simulation, which successfully reproduces the magnitude and large-scale pattern of the observed oxygen changes from the present to Last Glacial Maximum. Sensitivity experiments reveal that physical changes (e.g., more sluggish ocean circulation) contribute to only half of all glacial deep deoxygenation, whereas the other half is driven by enhanced efficiency of the biological pump. We found that iron input from the glaciogenic dust with higher iron solubility is the most significant factor for enhancement of the biological pump and deep-water deoxygenation. Glacial deep-water deoxygenation expands the hypoxic waters in the deep Pacific and Indian Ocean. The simulated global volume of hypoxic waters is nearly double the present value, which suggest that the glacial deep-water is sever environment for the benthic animals. Our model underestimated the deoxygenation in the deep Southern Ocean due to enhanced ventilation. The model-proxy comparison of oxygen change suggest that the stratified Southern Ocean is required for reproducing oxygen decline in the deep Southern Ocean. Enhanced efficiency of biological pump contributes to decrease of glacial CO2 by more than 30 ppm, which is supported by the model-proxy agreement of oxygen change. Our findings confirm the significance of the biological pump in glacial CO2 drawdown and deoxygenation.


2019 ◽  
Vol 32 (18) ◽  
pp. 5915-5940 ◽  
Author(s):  
R. L. Beadling ◽  
J. L. Russell ◽  
R. J. Stouffer ◽  
P. J. Goodman ◽  
M. Mazloff

Abstract The Southern Ocean (SO) is vital to Earth’s climate system due to its dominant role in exchanging carbon and heat between the ocean and atmosphere and transforming water masses. Evaluating the ability of fully coupled climate models to accurately simulate SO circulation and properties is crucial for building confidence in model projections and advancing model fidelity. By analyzing multiple biases collectively across large model ensembles, physical mechanisms governing the diverse mean-state SO circulation found across models can be identified. This analysis 1) assesses the ability of a large ensemble of models contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate observationally based metrics associated with an accurate representation of the Antarctic Circumpolar Current (ACC), and 2) presents a framework by which the quality of the simulation can be categorized and mechanisms governing the resulting circulation can be deduced. Different combinations of biases in critical metrics including the magnitude and position of the zonally averaged westerly wind stress maximum, wind-driven surface divergence, surface buoyancy fluxes, and properties and transport of North Atlantic Deep Water entering the SO produce distinct mean-state ACC transports. Relative to CMIP3, the quality of the CMIP5 SO simulations has improved. Eight of the thirty-one models simulate an ACC within observational uncertainty (2σ) for approximately the right reasons; that is, the models achieve accuracy in the surface wind stress forcing and the representation of the difference in the meridional density across the current. Improved observations allow for a better assessment of the SO circulation and its properties.


Author(s):  
Hailu Kong ◽  
Malte F. Jansen

AbstractIt remains uncertain how the Southern Ocean circulation responds to changes in surface wind stress, and whether coarse resolution simulations, where meso-scale eddy fluxes are parameterized, can adequately capture the response. We address this problem using two idealized model setups mimicking the Southern Ocean: a flat bottom channel, and a channel with moderately complex topography. Under each topographic configuration and varying wind stress, we compare several coarse resolution simulations, configured with different eddy parameterizations, against an eddy-resolving simulation. We find that: (1) without topography, sensitivity of the Antarctic Circumpolar Current (ACC) to wind stress is overestimated by coarse resolution simulations, due to an underestimate of the sensitivity of the eddy diffusivity; (2) in the presence of topography, stationary eddies dominate over transient eddies in counteracting the direct response of the ACC and overturning circulation to wind stress changes; (3) coarse resolution simulations with parameterized eddies capture this counteracting effect reasonably well, largely due to their ability to resolve stationary eddies. Our results highlight the importance of topography in modulating the response of the Southern Ocean circulation to changes in surface wind stress. The interaction between meso-scale eddies and stationary meanders induced by topography requires more attention in future development and testing of eddy parameterizations.


2020 ◽  
Author(s):  
Hyeong-Gyu Kim ◽  
Joowan Kim ◽  
Sang-Yoon Jun ◽  
Seong-Joong Kim

&lt;p&gt;Paleoclimate data shows a good correlation between the concentration of CO&lt;sub&gt;2&lt;/sub&gt; and atmospheric temperature in the geological timescale. Many studies compare the Last Glacial Maximum (LGM) and the Pre-Industrial era (PI), to understand the coupling processes. A popular mechanism explaining this coupling process is a modulation of the ocean circulation and related CO&lt;sub&gt;2&lt;/sub&gt; emission over the Southern Ocean due to atmospheric westerly. The atmospheric westerly plays an important role in driving ocean circulation; however, the related processes are not fully understood for the LGM period.&lt;/p&gt;&lt;p&gt;In this study, we examine physical processes determining the characteristics of the atmospheric westerly focusing on the Southern Ocean. Atmospheric states for LGM and PI are reproduced using a coupled earth system model with different sea ice conditions. A poleward intensification of the Southern Hemispheric Westerlies is observed for the LGM experiment. A comparison to PI shows that the meridional temperature gradient largely determines this intensification, and the enhanced meridional gradient is observed due to decreased heat flux from the subantarctic ocean in the LGM experiment. This result suggests that the Antarctic sea ice is a crucial component for understanding the Southern Hemispheric Westerly.&lt;/p&gt;


2015 ◽  
Vol 9 (2) ◽  
pp. 541-556 ◽  
Author(s):  
V. Zunz ◽  
H. Goosse

Abstract. Recent studies have investigated the potential link between the freshwater input derived from the melting of the Antarctic ice sheet and the observed recent increase in sea ice extent in the Southern Ocean. In this study, we assess the impact of an additional freshwater flux on the trend in sea ice extent and concentration in simulations with data assimilation, spanning the period 1850–2009, as well as in retrospective forecasts (hindcasts) initialised in 1980. In the simulations with data assimilation, the inclusion of an additional freshwater flux that follows an autoregressive process improves the reconstruction of the trend in ice extent and concentration between 1980 and 2009. This is linked to a better efficiency of the data assimilation procedure but can also be due to a better representation of the freshwater cycle in the Southern Ocean. The results of the hindcast simulations show that an adequate initial state, reconstructed thanks to the data assimilation procedure including an additional freshwater flux, can lead to an increase in the sea ice extent spanning several decades that is in agreement with satellite observations. In our hindcast simulations, an increase in sea ice extent is obtained even in the absence of any major change in the freshwater input over the last decades. Therefore, while the additional freshwater flux appears to play a key role in the reconstruction of the evolution of the sea ice in the simulation with data assimilation, it does not seem to be required in the hindcast simulations. The present work thus provides encouraging results for sea ice predictions in the Southern Ocean, as in our simulation the positive trend in ice extent over the last 30 years is largely determined by the state of the system in the late 1970s.


Sign in / Sign up

Export Citation Format

Share Document