scholarly journals Informing urban climate planning with high resolution data: the Hestia fossil fuel CO2 emissions for Baltimore, Maryland

2020 ◽  
Author(s):  
Geoffrey Scott Roest ◽  
Kevin R Gurney ◽  
Scot M Miller ◽  
Jianming Liang

Abstract Background Cities contribute more than 70% of global anthropogenic carbon dioxide (CO2) emissions and are leading the effort to reduce GHG emissions through sustainable planning and development. However, urban greenhouse gas mitigation often relies on self-reported emissions estimates that may be incomplete and unverifiable via atmospheric monitoring. We present the Hestia Scope 1 fossil fuel CO2 emissions for the city of Baltimore, Maryland – a gridded annual and hourly emissions data product for 2010 through 2015.Results The emissions in the base year of 2011 totaled 1431.5 kt C, with the largest emissions coming from onroad (35.0% of total city emissions), commercial (18.3%), residential (16.7%), and industrial (12.6%) sectors. Scope 1 electricity production and marine shipping were each generally less than 10% of the city’s total emissions. Baltimore’s self-reported Scope 1 emissions of 1,182.6 kt C were 22.8% lower than Hestia-Baltimore emission in 2014, largely due to the omission of petroleum consumption in buildings and several sectors that largely fall outside the city’s regulatory purview – industrial point sources, marine shipping, nonroad vehicles, rail, and aircraft.Conclusions We emphasize the need for comprehensive, Scope 1-only emissions estimates for emissions verification and measuring progress towards greenhouse gas mitigation goals using atmospheric monitoring, but we also acknowledge that city planners may desire a greater mix of scope 1, 2, and 3 emissions with an emphasis on activities under local policy control.

2020 ◽  
Author(s):  
Geoffrey Scott Roest ◽  
Kevin R Gurney ◽  
Scot M Miller ◽  
Jianming Liang

Abstract Background: Cities contribute more than 70% of global anthropogenic carbon dioxide (CO2) emissions and are leading the effort to reduce greenhouse gas (GHG) emissions through sustainable planning and development. However, urban greenhouse gas mitigation often relies on self-reported emissions estimates that may be incomplete and unverifiable via atmospheric monitoring of GHGs. We present the Hestia Scope 1 fossil fuel CO2 (FFCO2) emissions for the city of Baltimore, Maryland – a gridded annual and hourly emissions data product for 2010 through 2015 (Hestia-Baltimore v1.6). We also compare the Hestia-Baltimore emissions to overlapping Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory for 2014. Results: The Hestia-Baltimore emissions in 2014 totaled 1487.3 kt C (95% confidence interval of 1,158.9 – 1,944.9 kt C), with the largest emissions coming from onroad (34.2% of total city emissions), commercial (19.9%), residential (19.0%), and industrial (11.8%) sectors. Scope 1 electricity production and marine shipping were each generally less than 10% of the city’s total emissions. Baltimore’s self-reported Scope 1 FFCO2 emissions included onroad, natural gas consumption in buildings, and some electricity generating facilities within city limits. The self-reported Scope 1 FFCO2 total of 1,182.6 kt C was similar to the sum of matching emission sectors and fuels in Hestia-Baltimore v1.6. However, 20.5% of Hestia-Baltimore’s emissions were in sectors and fuels that were not included in the self-reported inventory. Petroleum use in buildings were omitted and all Scope 1 emissions from industrial point sources, marine shipping, nonroad vehicles, rail, and aircraft were categorically excluded.Conclusions: The omission of petroleum combustion in buildings and categorical exclusions of several sectors resulted in an underestimate of total Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory. Accurate Scope 1 FFCO2 emissions, along with Scope 2 and 3 emissions, are needed to inform effective urban policymaking for system-wide GHG mitigation. We emphasize the need for comprehensive Scope 1 emissions estimates for emissions verification and measuring progress towards Scope 1 GHG mitigation goals using atmospheric monitoring.


2020 ◽  
Author(s):  
Geoffrey Scott Roest ◽  
Kevin R Gurney ◽  
Scot M Miller ◽  
Jianming Liang

Abstract Background Cities contribute more than 70% of global anthropogenic carbon dioxide (CO2 ) emissions and are leading the effort to reduce greenhouse gas (GHG) emissions through sustainable planning and development. However, urban greenhouse gas mitigation often relies on self-reported emissions estimates that may be incomplete and unverifiable via atmospheric monitoring of GHGs. We present the Hestia Scope 1 fossil fuel CO2 (FFCO2 ) emissions for the city of Baltimore, Maryland – a gridded annual and hourly emissions data product for 2010 through 2015 (Hestia-Baltimore v1.6). We also compare the Hestia-Baltimore emissions to overlapping Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory for 2014. Results The Hestia-Baltimore emissions in 2014 totaled 1487.3 kt C (95% confidence interval of 1,158.9 – 1,944.9 kt C), with the largest emissions coming from onroad (34.2% of total city emissions), commercial (19.9%), residential (19.0%), and industrial (11.8%) sectors. Scope 1 electricity production and marine shipping were each generally less than 10% of the city’s total emissions. Baltimore’s self-reported Scope 1 FFCO2 emissions included onroad, natural gas consumption in buildings, and some electricity generating facilities within city limits. The self-reported Scope 1 FFCO2 total of 1,182.6 kt C was similar to the sum of matching emission sectors and fuels in Hestia-Baltimore v1.6. However, 20.5% of Hestia-Baltimore’s emissions were in sectors and fuels that were not included in the self-reported inventory. Petroleum use in buildings were omitted and all Scope 1 emissions from industrial point sources, marine shipping, nonroad vehicles, rail, and aircraft were categorically excluded. Conclusions The omission of petroleum combustion in buildings and categorical exclusions of several sectors resulted in an underestimate of total Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory. Accurate Scope 1 FFCO2 emissions, along with Scope 2 and 3 emissions, are needed to inform effective urban policymaking for system-wide GHG mitigation. We emphasize the need for comprehensive Scope 1 emissions estimates for emissions verification and measuring progress towards Scope 1 GHG mitigation goals using atmospheric monitoring.


2020 ◽  
Author(s):  
Geoffrey Scott Roest ◽  
Kevin R Gurney ◽  
Scot M Miller ◽  
Jianming Liang

Abstract Background Cities contribute more than 70% of global anthropogenic carbon dioxide (CO2) emissions and are leading the effort to reduce greenhouse gas (GHG) emissions through sustainable planning and development. However, urban greenhouse gas mitigation often relies on self-reported emissions estimates that may be incomplete and unverifiable via atmospheric monitoring of GHGs. We present the Hestia Scope 1 fossil fuel CO2 (FFCO2) emissions for the city of Baltimore, Maryland – a gridded annual and hourly emissions data product for 2010 through 2015 (Hestia-Baltimore v1.6). We also compare the Hestia-Baltimore emissions to overlapping Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory for 2014. Results The Hestia-Baltimore emissions in 2014 totaled 1487.3 kt C (95% confidence interval of 1,158.9 – 1,944.9 kt C), with the largest emissions coming from onroad (34.2% of total city emissions), commercial (19.9%), residential (19.0%), and industrial (11.8%) sectors. Scope 1 electricity production and marine shipping were each generally less than 10% of the city’s total emissions. Baltimore’s self-reported Scope 1 FFCO2 emissions included onroad, natural gas consumption in buildings, and some electricity generating facilities within city limits. The self-reported Scope 1 FFCO2 total of 1,182.6 kt C was similar to the sum of matching emission sectors and fuels in Hestia-Baltimore v1.6. However, 20.5% of Hestia-Baltimore’s emissions were in sectors and fuels that were not included in the self-reported inventory. Petroleum use in buildings were omitted and all Scope 1 emissions from industrial point sources, marine shipping, nonroad vehicles, rail, and aircraft were categorically excluded.Conclusions The omission of petroleum combustion in buildings and categorical exclusions of several sectors resulted in an underestimate of total Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory. Accurate Scope 1 FFCO2 emissions, along with Scope 2 and 3 emissions, are needed to inform effective urban policymaking for system-wide GHG mitigation. We emphasize the need for comprehensive Scope 1 emissions estimates for emissions verification and measuring progress towards Scope 1 GHG mitigation goals using atmospheric monitoring.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Geoffrey S. Roest ◽  
K. R. Gurney ◽  
S. M. Miller ◽  
J. Liang

Abstract Background Cities contribute more than 70% of global anthropogenic carbon dioxide (CO2) emissions and are leading the effort to reduce greenhouse gas (GHG) emissions through sustainable planning and development. However, urban greenhouse gas mitigation often relies on self-reported emissions estimates that may be incomplete and unverifiable via atmospheric monitoring of GHGs. We present the Hestia Scope 1 fossil fuel CO2 (FFCO2) emissions for the city of Baltimore, Maryland—a gridded annual and hourly emissions data product for 2010 through 2015 (Hestia-Baltimore v1.6). We also compare the Hestia-Baltimore emissions to overlapping Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory for 2014. Results The Hestia-Baltimore emissions in 2014 totaled 1487.3 kt C (95% confidence interval of 1158.9–1944.9 kt C), with the largest emissions coming from onroad (34.2% of total city emissions), commercial (19.9%), residential (19.0%), and industrial (11.8%) sectors. Scope 1 electricity production and marine shipping were each generally less than 10% of the city’s total emissions. Baltimore’s self-reported Scope 1 FFCO2 emissions included onroad, natural gas consumption in buildings, and some electricity generating facilities within city limits. The self-reported Scope 1 FFCO2 total of 1182.6 kt C was similar to the sum of matching emission sectors and fuels in Hestia-Baltimore v1.6. However, 20.5% of Hestia-Baltimore’s emissions were in sectors and fuels that were not included in the self-reported inventory. Petroleum use in buildings were omitted and all Scope 1 emissions from industrial point sources, marine shipping, nonroad vehicles, rail, and aircraft were categorically excluded. Conclusions The omission of petroleum combustion in buildings and categorical exclusions of several sectors resulted in an underestimate of total Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory. Accurate Scope 1 FFCO2 emissions, along with Scope 2 and 3 emissions, are needed to inform effective urban policymaking for system-wide GHG mitigation. We emphasize the need for comprehensive Scope 1 emissions estimates for emissions verification and measuring progress towards Scope 1 GHG mitigation goals using atmospheric monitoring.


2019 ◽  
Vol 11 (3) ◽  
pp. 1309-1335 ◽  
Author(s):  
Kevin R. Gurney ◽  
Risa Patarasuk ◽  
Jianming Liang ◽  
Yang Song ◽  
Darragh O'Keeffe ◽  
...  

Abstract. High-resolution bottom-up estimation provides a detailed guide for city greenhouse gas mitigation options, offering details that can increase the economic efficiency of emissions reduction options and synergize with other urban policy priorities at the human scale. As a critical constraint to urban atmospheric CO2 inversion studies, bottom-up spatiotemporally explicit emissions data products are also necessary to construct comprehensive urban CO2 emission information systems useful for trend detection and emissions verification. The “Hestia Project” is an effort to provide bottom-up granular fossil fuel (FFCO2) emissions for the urban domain with building/street and hourly space–time resolution. Here, we report on the latest urban area for which a Hestia estimate has been completed – the Los Angeles megacity, encompassing five counties: Los Angeles County, Orange County, Riverside County, San Bernardino County and Ventura County. We provide a complete description of the methods used to build the Hestia FFCO2 emissions data product for the years 2010–2015. We find that the LA Basin emits 48.06 (±5.3) MtC yr−1, dominated by the on-road sector. Because of the uneven spatial distribution of emissions, 10 % of the largest-emitting grid cells account for 93.6 %, 73.4 %, 66.2 %, and 45.3 % of the industrial, commercial, on-road, and residential sector emissions, respectively. Hestia FFCO2 emissions are 10.7 % larger than the inventory estimate generated by the local metropolitan planning agency, a difference that is driven by the industrial and electricity production sectors. The detail of the Hestia-LA FFCO2 emissions data product offers the potential for highly targeted, efficient urban greenhouse gas emissions mitigation policy. The Hestia-LA v2.5 emissions data product can be downloaded from the National Institute of Standards and Technology repository (https://doi.org/10.18434/T4/1502503, Gurney et al., 2019).


2020 ◽  
Author(s):  
Geoffrey Roest ◽  
Kevin Gurney ◽  
Scot Miller ◽  
Jianming Liang

<p>As atmospheric carbon dioxide (CO<sub>2</sub>) levels continue to rise, a global effort to mitigate greenhouse gas (GHG) emissions is underway. Urban domains, which are responsible for more than 70% of global anthropogenic CO<sub>2</sub> emissions, are emerging as leaders in mitigation policy and planning – especially in the United States of America (US), which has formally withdrawn from the Paris Agreement. However, cities face obstacles in developing comprehensive and spatially explicit GHG inventories to inform specific actions and goals. The Vulcan emission product provides highly resolved Scope 1 fossil fuel CO<sub>2</sub> (FFCO<sub>2</sub>) emissions in space and time for the entire US, while the Hestia emission products utilize even more granular spatiotemporal data within four US urban domains. Here, we present results from Hestia for Baltimore – a colonial-era city on the Atlantic Coast of the US. Scope 1 FFCO<sub>2</sub> emissions are dominated by energy consumption in buildings, onroad vehicle emissions, and industrial point sources. Large, systematic differences exist between Hestia and Baltimore’s self-reported GHG inventory, which follows the Global Protocol for Community-scale Greenhouse Gas Emission Inventories (GPC). These differences include entire sectors being omitted from emissions reporting due to a determination of ownership (e.g. Scope 1 vs. Scope 3), data gaps and limitations, and a conflation of Scope 1 and Scope 2 electricity production emissions. Urban planning may be better informed by utilizing additional data sources on fuel and energy consumption – especially fuel and energy that are not provided by a centralized utility – to develop comprehensive GHG emission estimates.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 563
Author(s):  
Kelsey Anderson ◽  
Philip A. Moore ◽  
Jerry Martin ◽  
Amanda J. Ashworth

Gaseous emissions from poultry litter causes production problems for producers as well as the environment, by contributing to climate change and reducing air quality. Novel methods of reducing ammonia (NH3) and greenhouse gas (GHG) emissions in poultry facilities are needed. As such, our research evaluated GHG emissions over a 42 d period. Three separate flocks of 1000 broilers were used for this study. The first flock was used only to produce litter needed for the experiment. The second and third flocks were allocated to 20 pens in a randomized block design with four replicated of five treatments. The management practices studied included an unamended control; a conventional practice of incorporating aluminum sulfate (referred to as alum) at 98 kg/100 m2); a novel litter amendment made from alum mud, bauxite, and sulfuric acid (alum mud litter amendment, AMLA) applied at different rates (49 and 98 kg/100 m2) and methods (surface applied or incorporated). Nitrous oxide emissions were low for all treatments in flocks 2 and 3 (0.40 and 0.37 mg m2 hr−1, respectively). The formation of caked litter (due to excessive moisture) during day 35 and 42 caused high variability in CH4 and CO2 emissions. Alum mud litter amendment and alum did not significantly affect GHGs emissions from litter, regardless of the amendment rate or application method. In fact, litter amendments such as alum and AMLA typically lower GHG emissions from poultry facilities by reducing ventilation requirements to maintain air quality in cooler months due to lower NH3 levels, resulting in less propane use and concomitant reductions in CO2 emissions.


Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Kai Wu ◽  
Thomas Lauvaux ◽  
Kenneth J. Davis ◽  
Aijun Deng ◽  
Israel Lopez Coto ◽  
...  

The Indianapolis Flux Experiment aims to utilize a variety of atmospheric measurements and a high-resolution inversion system to estimate the temporal and spatial variation of anthropogenic greenhouse gas emissions from an urban environment. We present a Bayesian inversion system solving for fossil fuel and biogenic CO2 fluxes over the city of Indianapolis, IN. Both components were described at 1 km resolution to represent point sources and fine-scale structures such as highways in the a priori fluxes. With a series of Observing System Simulation Experiments, we evaluate the sensitivity of inverse flux estimates to various measurement deployment strategies and errors. We also test the impacts of flux error structures, biogenic CO2 fluxes and atmospheric transport errors on estimating fossil fuel CO2 emissions and their uncertainties. The results indicate that high-accuracy and high-precision measurements produce significant improvement in fossil fuel CO2 flux estimates. Systematic measurement errors of 1 ppm produce significantly biased inverse solutions, degrading the accuracy of retrieved emissions by about 1 µmol m–2 s–1 compared to the spatially averaged anthropogenic CO2 emissions of 5 µmol m–2 s–1. The presence of biogenic CO2 fluxes (similar magnitude to the anthropogenic fluxes) limits our ability to correct for random and systematic emission errors. However, assimilating continuous fossil fuel CO2 measurements with 1 ppm random error in addition to total CO2 measurements can partially compensate for the interference from biogenic CO2 fluxes. Moreover, systematic and random flux errors can be further reduced by reducing model-data mismatch errors caused by atmospheric transport uncertainty. Finally, the precision of the inverse flux estimate is highly sensitive to the correlation length scale in the prior emission errors. This work suggests that improved fossil fuel CO2 measurement technology, and better understanding of both prior flux and atmospheric transport errors are essential to improve the accuracy and precision of high-resolution urban CO2 flux estimates.


Author(s):  
Douglas Warner ◽  
John Tzilivakis ◽  
Andrew Green ◽  
Kathleen Lewis

Purpose This paper aims to assess agri-environment (AE) scheme options on cultivated agricultural land in England for their impact on agricultural greenhouse gas (GHG) emissions. It considers both absolute emissions reduction and reduction incorporating yield decrease and potential production displacement. Similarities with Ecological Focus Areas (EFAs) introduced in 2015 as part of the post-2014 Common Agricultural Policy reform, and their potential impact, are considered. Design/methodology/approach A life-cycle analysis approach derives GHG emissions for 18 key representative options. Meta-modelling is used to account for spatial environmental variables (annual precipitation, soil type and erosion risk), supplementing the Intergovernmental Panel on Climate Change methodology. Findings Most options achieve an absolute reduction in GHG emissions compared to an existing arable crop baseline but at the expense of removing land from production, risking production displacement. Soil and water protection options designed to reduce soil erosion and nitrate leaching decrease GHG emissions without loss of crop yield. Undersown spring cereals support decreased inputs and emissions per unit of crop yield. The most valuable AE options identified are included in the proposed EFAs, although lower priority is afforded to some. Practical implications Recommendations are made where applicable to modify option management prescriptions and to further reduce GHG emissions. Originality/value This research is relevant and of value to land managers and policy makers. A dichotomous key summarises AE option prioritisation and supports GHG mitigation on cultivated land in England. The results are also applicable to other European countries.


Sign in / Sign up

Export Citation Format

Share Document