scholarly journals Bioutilization of Chicken Feather Wastes by Newly Isolated Keratinolytic Bacteria Into Protein Hydrolysates With Improved Functionalities

Author(s):  
Saugat Prajapati ◽  
Sushil Koirala ◽  
Anil Kumar Anal

Abstract In this study, a novel feather-degrading bacteria B. amyloliquefaciens KB1 was isolated from chicken farm bed (CFB), identified by morphological, physico-biochemical tests followed by 16s rDNA analysis. Among observed isolates, bacterial isolate (KB1) showed the highest degree of feather degradation (74.78 ± 2.94 %) and total soluble protein (205 ± 0.03 mg/ g). Using the same species of bacteria, the optimum fermentation condition was found at 40 oC, pH 9, and 1 % (w/v) feather concentration that produced 260 mg/ g of soluble protein and 86.16 % feather degradation using response surface methodology in a Box-Behnken design space. The obtained hydrolysates exhibited bioactive properties. The amino acid profile showed the increase in concentration of essential amino acid compared with feather meal broth. The selection of safe screening source of this new bacteria in CFB produced hydrolysates with enhanced bioactivity applicable for food, feed, and cosmetic applications along with environmental remediation.

2021 ◽  
Vol 9 (3) ◽  
pp. 812-822
Author(s):  
Bayu Kanetro ◽  
Muhamad Riyanto ◽  
Dwiyati Pujimulyani ◽  
Nurul Huda

Jack bean as a source of vegetable protein had not been popular. Seed germination had been known to improve its nutritional quality, especially protein and amino acid profile. This study determined the effect of germination on the color, beany flavor, protein content, functional properties, and amino acid profile of jack bean flour. A complete randomized design was used for this experiment. Germination was carried out for 0, 24, 48, and 72 hours. The seed (control) and germinated jack bean flours were analyzed for oil absorption, water absorption, emulsifying and foaming capacities, as well as the soluble protein content to determine the best germination time. Furthermore, the amino acid profile of the jack bean flour produced from the best germination time was analyzed. The results of this study indicated that the total and soluble protein of the seed and germinated jack bean seeds for 0, 24, 48, 60, and 72 hours were 23.30 and 5.95; 22.61 and 7.61; 21.18 and 10.68; 23.26 and 10.22; 23.98 and 10.81%, respectively. Germination of jack bean improved the functional properties. A germination time of 72 hours increased the oil capacity, water absorption capacity, foaming capacity and decreased the emulsion capacity significantly. The hydrophilic and hydrophobic amino acids of the germinated jack bean flour increased to 3.21 and 2.12% of the seed flour, respectively. The increase of the foaming capacity was related to the increase in hydrophobic amino acids of germinated jack bean flour compared to seed flours, that were glycine 1.23 and 1.01; alanine 1.29 and 1.01; valine 1.16 and 1.00; leucine 1.84 and 1.09%, respectively. Germination of jack bean for 72 hours increased significantly the essential amino acids, namely: leucine, lysine, and valine.


Author(s):  
Ya-Dong SHAO ◽  
De-Jian ZHANG ◽  
Xian-Chun HU ◽  
Qiang-Sheng WU ◽  
Chang-Jun JIANG ◽  
...  

Tea (Camellia sinensis) plants inhabit arbuscular mycorrhizal fungi (AMF) in rhizosphere, whereas it is not clear whether AMF improves leaf food quality of tea plants. A potted study was conducted to determine effects of Claroideoglomus etunicatum, Diversispora spurca, D. versiformis and a mixture of the three AMF species on leaf sugar, amino acid, soluble protein, tea polyphenol, catechuic acid, and flavonoid contents of Camellia sinensis ‘Fuding Dabaicha’ seedlings. After 12 weeks of AMF inoculation, mycorrhizal plants recorded significantly higher shoot biomass and total leaf area, whilst the effect was ranked as C. etunicatum > D. spurca > mixed-AMF > D. versiformis in the decreasing order. AMF treatments significantly increased leaf total amino acid concentrations, accompanied with up-regulation of amino acid synthetic enzymes genes glutamine synthetase (CsGS), glutamate synthase (CsGOGAT) and glutamate dehydrogenase (CsGDH). Leaf glucose, sucrose, total soluble protein, tea polyphenol, catechuic acid, and flavonoid contents were significantly higher in AMF- than in non-AMF-inoculated plants. In addition, mycorrhizal inoculation notably up-regulated the expression level of leaf 3-hydroxy-3-methylglutaryl coenzyme gene (CsHMGR), ascorbate peroxidase gene (CsAPX), and tea caffeine synthase 1 gene (CsTCS1). These results implied that AMF inoculation had positive effects on leaf food quality partly by means of up-regulation of relevant gene expression in ‘Fuding Dabaicha’ seedlings.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
BM Silva ◽  
AP Oliveira ◽  
DM Pereira ◽  
C Sousa ◽  
RM Seabra ◽  
...  

2019 ◽  
Vol 25 (6) ◽  
pp. 775-784
Author(s):  
Moyu Taniguchi ◽  
Asako Shimotori ◽  
Eiichiro Fukusaki

2020 ◽  
Vol 22 (9) ◽  
pp. 657-662 ◽  
Author(s):  
Mustafa Celik ◽  
Alper Şen ◽  
İsmail Koyuncu ◽  
Ataman Gönel

Aim and Objective:: To determine the mechanisms present in the etiopathogenesis of nasal polyposis. It is not clear whether amino acids contribute in a causal way to the development of the disease. Therefore, the aim of this study was to determine the plasma-free amino acid profile in patients with nasal polyposis and to compare the results with a healthy control group. Materials and Methods:: This was a prospective controlled study that took place in the Otolaryngology Department at the Harran University Faculty of Medicine between April 2017 and April 2018. Plasmafree amino acid profile levels were studied in serum samples taken from a patient group and a healthy control group. Patients who were diagnosed with bilateral diffuse nasal polyposis and were scheduled for surgical interventions were included in this study. Individuals whose age, gender, and body mass index values were compatible with that of the patient group and who did not have any health problems were included in the control group. All the participants whose levels of plasma-free amino acid were thought to be affected by one or more of the following factors were excluded from the study: smoking and alcohol use, allergic rhinitis presence, the presence of acute or chronic sinusitis, a history of endoscopic sinus surgery, unilateral nasal masses, a history of chronic drug use, systemic or topical steroid use in the last three months for any reason, and liver, kidney, hematological, cardiovascular, metabolic, neurological, or psychiatric disorders or malignancies. Results: In patients with nasal polyposis, 3-methyl histidine (3-MHIS: nasal polyposis group (ng) = 3.22 (1.92 – 6.07); control group (cg) = 1.21 (0.77 – 1.68); p = 0.001); arginine (arg: ng = 98.95 (70.81 – 117.75); cg = 75.10 (54.49 – 79.88); p = 0.005); asparagine (asn: ng = 79.84 (57.50 – 101.44); cg = 60.66 (46.39 – 74.62); p = 0.021); citrulline (cit: ng = 51.83 (43.81 – 59.78); cg = 38.33 (27.81 – 53.73); p = 0.038); cystine (cys: ng = 4.29 (2.43 – 6.66); cg = 2.41 (1.51 – 4.16); p = 0.019); glutamic acid (glu: ng = 234.86 (128.75 – 286.66); cg = 152.37 (122.51 – 188.34); p = 0.045); histidine (his: ng = 94.19 (79.34 – 113.99); cg = 74.80 (62.76 – 98.91); p = 0.018); lysine (lys: ng = 297.22 (206.55 – 371.25); cg = 179.50 (151.58 – 238.02); p = 0.001); ornithine (ng = 160.62 (128.36 – 189.32); cg = 115.91 (97.03 – 159.91); p = 0.019); serine (ser: ng = 195.15 (151.58 – 253.07); cg = 83.07 (67.44 – 92.44); p = 0.001); taurine (tau: ng = 74.69 (47.00 – 112.13); cg = 53.14 (33.57 – 67.31); p = 0.006); tryptophan (trp: ng = 52.31 (33.81 – 80.11); cg = 34.44 (25.94 – 43.07); p = 0.005), homocitrulline (ng = 1.75 (1.27 – 2.59); cg = 0.00 (0.00 – 0.53); p = 0.001); norvaline (ng = 6.90 (5.61 – 9.18); cg = 4.93 (3.74 – 7.13); p = 0.021); argininosuccinic acid (ng = 14.33 (10.06 – 25.65); cg = 12.22 (5.77 – 16.87) p = 0.046); and plasma concentrations were significantly higher than in the healthy control group (p <0.05). However, the gamma-aminobutyric acid (gaba: ng = 0.16 (0.10 – 0.24); cg = 0.21 (0.19 – 0.29); p = 0.010) plasma concentration was significantly lower in the nasal polyposis group than in the healthy control group. Conclusion: In this study, plasma levels of 15 free amino acids were significantly higher in the nasal polyposis group than in the healthy control group. A plasma level of 1 free amino acid was found to be significantly lower in the nasal polyposis group compared to the healthy control group. Therefore, it is important to determine the possibility of using the information obtained to prevent the recurrence of the condition and to develop effective treatment strategies. This study may be a milestone for studies of this subject. However, this study needs to be confirmed by further studies conducted in a larger series.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 377
Author(s):  
Bomi Ryu ◽  
Kyung-Hoon Shin ◽  
Se-Kwon Kim

Fish muscle, which accounts for 15%–25% of the total protein in fish, is a desirable protein source. Their hydrolysate is in high demand nutritionally as a functional food and thus has high potential added value. The hydrolysate contains physiologically active amino acids and various essential nutrients, the contents of which depend on the source of protein, protease, hydrolysis method, hydrolysis conditions, and degree of hydrolysis. Therefore, it can be utilized for various industrial applications including use in nutraceuticals and pharmaceuticals to help improve the health of humans. This review discusses muscle protein hydrolysates generated from the muscles of various fish species, as well as their amino acid composition, and highlights their functional properties and bioactivity. In addition, the role of the amino acid profile in regulating the biological and physiological activities, nutrition, and bitter taste of hydrolysates is discussed.


Sign in / Sign up

Export Citation Format

Share Document