scholarly journals Improvement of Functional Properties of Jack Bean (Canavalia ensiformis) Flour by Germination and Its Relation to Amino Acids Profile

2021 ◽  
Vol 9 (3) ◽  
pp. 812-822
Author(s):  
Bayu Kanetro ◽  
Muhamad Riyanto ◽  
Dwiyati Pujimulyani ◽  
Nurul Huda

Jack bean as a source of vegetable protein had not been popular. Seed germination had been known to improve its nutritional quality, especially protein and amino acid profile. This study determined the effect of germination on the color, beany flavor, protein content, functional properties, and amino acid profile of jack bean flour. A complete randomized design was used for this experiment. Germination was carried out for 0, 24, 48, and 72 hours. The seed (control) and germinated jack bean flours were analyzed for oil absorption, water absorption, emulsifying and foaming capacities, as well as the soluble protein content to determine the best germination time. Furthermore, the amino acid profile of the jack bean flour produced from the best germination time was analyzed. The results of this study indicated that the total and soluble protein of the seed and germinated jack bean seeds for 0, 24, 48, 60, and 72 hours were 23.30 and 5.95; 22.61 and 7.61; 21.18 and 10.68; 23.26 and 10.22; 23.98 and 10.81%, respectively. Germination of jack bean improved the functional properties. A germination time of 72 hours increased the oil capacity, water absorption capacity, foaming capacity and decreased the emulsion capacity significantly. The hydrophilic and hydrophobic amino acids of the germinated jack bean flour increased to 3.21 and 2.12% of the seed flour, respectively. The increase of the foaming capacity was related to the increase in hydrophobic amino acids of germinated jack bean flour compared to seed flours, that were glycine 1.23 and 1.01; alanine 1.29 and 1.01; valine 1.16 and 1.00; leucine 1.84 and 1.09%, respectively. Germination of jack bean for 72 hours increased significantly the essential amino acids, namely: leucine, lysine, and valine.

2021 ◽  
Vol 924 (1) ◽  
pp. 012033
Author(s):  
H T Palupi ◽  
T Estiasih ◽  
Yunianta ◽  
A Sutrisno

Abstract Lima beans (Phaseolus Lunatus L.) are underutilized crops with an excellent profile. Processing to flour to enhance the starch and protein content, reducing anti-nutritional components and the same time diversifies their use as ingredients by altering their functional properties. The study aims to characterize nutritional, amino acids, anti-nutritional, pasting and functional properties of Lima bean flour from Indonesia’s cultivated plant. The results showed that the Lima bean flour has a high carbohydrate concentration, moderate protein concentration, and low fat concentration. This flour has a balanced amino acid profile, rich in essential amino acids, highlighting them as a source of good quality protein for the food formulation of protein-enriched. The Lima bean flour contained 10.36 mg/g phytic acid, lower in phenolic content (0.63 mg/g) and concentration of HCN (8.83 mg/kg). The functional properties of the Lima bean flour swelling power, solubility, water absorption capacities, and oil absorption capacities were 6.88 g/g, 18.68%, 1.93 g/g, and 1.56 g/g respectively. Pasting properties of Lima bean flour exhibited peak, breakdown, final, and setback viscosity in 1172 cP, 83 cP, 2377 cP, 1288 cP respectively, and temperature pasting was high in 870C. The study may provide useful information to consumers and food manufacturers that Lima bean flour is significant potential used to enhance the nutritional value of cereal-based foods.


Author(s):  
V. V. Kolpakova ◽  
V. A. Kovalenok

The aim of the work was to study the dependence of the functional properties of dry wheat gluten (DWG) on the quality indicators obtained after regeneration of its raw form, and amino acid composition. Given that the main direction of use of DWG is the production of flour and bread, the data on the relationship are necessary to predict and increase its use in the production of confectionery, sausage products and other food products. We used 19 samples of the DWG produced by «BM» (Kazakhstan), 3 samples obtained from strong, weak, and average wheat grain quality, and methods for determining the yield and compression deformation (elasticity), the hydration ability of the regenerated raw SPK, amino acid and fractional composition. It is established that the functional properties of the DWG can be predicted on the basis of hydration and compression deformation (elasticity). The DWG with the hydration of 190–200% had the highest foaming capacity, and the most fat emulsifying ability with values of 140–150%. In order to provide greater foaming ability, it is advisable to use the SEC with compression deformation of 70-80 units. app., greater ability to emulsify and bind fat - with values of 60-80 units. app., and to bind water - with an indicator of DWG 50-70 units. app. For the solubility of the DWG proteins, a high positive correlation with the sum of non-polar amino acids of whole gluten and a negative - gliadin was established. For water-binding capacity (WBC) of gluten, an inverse dependence on the sum of polar amino acids of both glutenin fractions (r = -0.67 and -0.98) is characteristic, for LSS, a direct dependence on the sum of polar amino acids of gliadin (r = 0.78) and whole gluten (r = 0.95), the reverse of the amount of non-polar amino acids of soluble and insoluble glutenin (r = 0.86-0.92). WBC of gluten is inversely dependent on the sum of the polar amino acids of both glutenin fractions (r = -0.67 and -0.98), for the fat binding one is directly dependent on the sum of the polar amino acids of gliadin (r = 0.78) and whole gluten (r = 0.95), inverse - from the sum of non-polar amino acids of soluble and insoluble glutenin (r = 0.86-0.92). Fat-emulsifying capacity (FEC) positively correlated with the sum of non-polar amino acids of the whole complex of gluten and gliadin (r = 0.70-0.86) and negatively with the sum of polar amino acids of SEC and all its fractions (-0.62-0.84). Foaming capacity (FC) is interrelated with the sum of non-polar amino acids of gliadin and both fractions of insoluble glutenin (r = 0.79-0.95).


2020 ◽  
Vol 22 (9) ◽  
pp. 657-662 ◽  
Author(s):  
Mustafa Celik ◽  
Alper Şen ◽  
İsmail Koyuncu ◽  
Ataman Gönel

Aim and Objective:: To determine the mechanisms present in the etiopathogenesis of nasal polyposis. It is not clear whether amino acids contribute in a causal way to the development of the disease. Therefore, the aim of this study was to determine the plasma-free amino acid profile in patients with nasal polyposis and to compare the results with a healthy control group. Materials and Methods:: This was a prospective controlled study that took place in the Otolaryngology Department at the Harran University Faculty of Medicine between April 2017 and April 2018. Plasmafree amino acid profile levels were studied in serum samples taken from a patient group and a healthy control group. Patients who were diagnosed with bilateral diffuse nasal polyposis and were scheduled for surgical interventions were included in this study. Individuals whose age, gender, and body mass index values were compatible with that of the patient group and who did not have any health problems were included in the control group. All the participants whose levels of plasma-free amino acid were thought to be affected by one or more of the following factors were excluded from the study: smoking and alcohol use, allergic rhinitis presence, the presence of acute or chronic sinusitis, a history of endoscopic sinus surgery, unilateral nasal masses, a history of chronic drug use, systemic or topical steroid use in the last three months for any reason, and liver, kidney, hematological, cardiovascular, metabolic, neurological, or psychiatric disorders or malignancies. Results: In patients with nasal polyposis, 3-methyl histidine (3-MHIS: nasal polyposis group (ng) = 3.22 (1.92 – 6.07); control group (cg) = 1.21 (0.77 – 1.68); p = 0.001); arginine (arg: ng = 98.95 (70.81 – 117.75); cg = 75.10 (54.49 – 79.88); p = 0.005); asparagine (asn: ng = 79.84 (57.50 – 101.44); cg = 60.66 (46.39 – 74.62); p = 0.021); citrulline (cit: ng = 51.83 (43.81 – 59.78); cg = 38.33 (27.81 – 53.73); p = 0.038); cystine (cys: ng = 4.29 (2.43 – 6.66); cg = 2.41 (1.51 – 4.16); p = 0.019); glutamic acid (glu: ng = 234.86 (128.75 – 286.66); cg = 152.37 (122.51 – 188.34); p = 0.045); histidine (his: ng = 94.19 (79.34 – 113.99); cg = 74.80 (62.76 – 98.91); p = 0.018); lysine (lys: ng = 297.22 (206.55 – 371.25); cg = 179.50 (151.58 – 238.02); p = 0.001); ornithine (ng = 160.62 (128.36 – 189.32); cg = 115.91 (97.03 – 159.91); p = 0.019); serine (ser: ng = 195.15 (151.58 – 253.07); cg = 83.07 (67.44 – 92.44); p = 0.001); taurine (tau: ng = 74.69 (47.00 – 112.13); cg = 53.14 (33.57 – 67.31); p = 0.006); tryptophan (trp: ng = 52.31 (33.81 – 80.11); cg = 34.44 (25.94 – 43.07); p = 0.005), homocitrulline (ng = 1.75 (1.27 – 2.59); cg = 0.00 (0.00 – 0.53); p = 0.001); norvaline (ng = 6.90 (5.61 – 9.18); cg = 4.93 (3.74 – 7.13); p = 0.021); argininosuccinic acid (ng = 14.33 (10.06 – 25.65); cg = 12.22 (5.77 – 16.87) p = 0.046); and plasma concentrations were significantly higher than in the healthy control group (p <0.05). However, the gamma-aminobutyric acid (gaba: ng = 0.16 (0.10 – 0.24); cg = 0.21 (0.19 – 0.29); p = 0.010) plasma concentration was significantly lower in the nasal polyposis group than in the healthy control group. Conclusion: In this study, plasma levels of 15 free amino acids were significantly higher in the nasal polyposis group than in the healthy control group. A plasma level of 1 free amino acid was found to be significantly lower in the nasal polyposis group compared to the healthy control group. Therefore, it is important to determine the possibility of using the information obtained to prevent the recurrence of the condition and to develop effective treatment strategies. This study may be a milestone for studies of this subject. However, this study needs to be confirmed by further studies conducted in a larger series.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 203
Author(s):  
Denisa Avdouli ◽  
Johannes F. J. Max ◽  
Nikolaos Katsoulas ◽  
Efi Levizou

In a cascade hydroponic system, the used nutrient solution drained from a primary crop is directed to a secondary crop, enhancing resource-use efficiency while minimizing waste. Nevertheless, the inevitably increased EC of the drainage solution requires salinity-tolerant crops. The present study explored the salinity-tolerance thresholds of basil to evaluate its potential use as a secondary crop in a cascade system. Two distinct but complemented approaches were used; the first experiment examined basil response to increased levels of salinity (5, 10 and 15 dS m−1, compared with 2 dS m−1 of control) to identify the limits, and the second experiment employed a cascade system with cucumber as a primary crop to monitor basil responses to the drainage solution of 3.2 dS m−1. Growth, ascorbate content, nutrient concentration, and total amino acid concentration and profile were determined in both experiments. Various aspects of basil growth and biochemical performance collectively indicated the 5 dS m−1 salinity level as the upper limit/threshold of tolerance to stress. Higher salinity levels considerably suppressed fresh weight production, though the total concentration of amino acids showed a sevenfold increase under 15 dS m−1 and 4.5-fold under 5 and 10 dS m−1 compared to the control. The performance of basil in the cascade system was subject to a compromise between a reduction of fresh produce and an increase of total amino acids and ascorbate content. This outcome indicated that basil performed well under the conditions and the system employed in the present study, and might be a good candidate for use as a secondary crop in cascade-hydroponics systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jing Fan ◽  
Jing Hong ◽  
Jun-Duo Hu ◽  
Jin-Lian Chen

Aim. Amino acid metabolism in cancer patients differs from that in healthy people. In the study, we performed urine-free amino acid profile of gastric cancer at different stages and health subjects to explore potential biomarkers for diagnosing or screening gastric cancer.Methods. Forty three urine samples were collected from inpatients and healthy adults who were divided into 4 groups. Healthy adults were in group A (n=15), early gastric cancer inpatients in group B (n=7), and advanced gastric cancer inpatients in group C (n=16); in addition, two healthy adults and three advanced gastric cancer inpatients were in group D (n=5) to test models. We performed urine amino acids profile of each group by applying ion chromatography (IC) technique and analyzed urine amino acids according to chromatogram of amino acids standard solution. The data we obtained were processed with statistical analysis. A diagnostic model was constructed to discriminate gastric cancer from healthy individuals and another diagnostic model for clinical staging by principal component analysis. Differentiation performance was validated by the area under the curve (AUC) of receiver-operating characteristic (ROC) curves.Results. The urine-free amino acid profile of gastric cancer patients changed to a certain degree compared with that of healthy adults. Compared with healthy adult group, the levels of valine, isoleucine, and leucine increased (P<0.05), but the levels of histidine and methionine decreased (P<0.05), and aspartate decreased significantly (P<0.01). The urine amino acid profile was also different between early and advanced gastric cancer groups. Compared with early gastric cancer, the levels of isoleucine and valine decreased in advanced gastric cancer (P<0.05). A diagnosis model constructed for gastric cancer with AUC value of 0.936 tested by group D showed that 4 samples could coincide with it. Another diagnosis model for clinical staging with an AUC value of 0.902 tested by 3 advanced gastric cancer inpatients of group D showed that all could coincide with the model.Conclusions. The noticeable differences of urine-free amino acid profiles between gastric cancer patients and healthy adults indicate that such amino acids as valine, isoleucine, leucine, methionine, histidine and aspartate are important metabolites in cell multiplication and gene expression during tumor growth and metastatic process. The study suggests that urine-free amino acid profiling is of potential value for screening or diagnosing gastric cancer.


2021 ◽  
Author(s):  
Irina Gaivoronskaya ◽  
Valenitna Kolpakova

The aim of the work was to optimize the process of obtaining multicomponent protein compositions with high biological value and higher functional properties than the original vegetable protein products. Was realized studies to obtain biocomposites on the base of pea protein-oat protein and pea protein-rice protein. Developed composites were enriched with all limited amino acids. For each of the essential amino acids, the amino acid score was 100% and higher. Protein products used in these compositions are not in major allergen list, which allows to use these compositions in allergen-free products and specialized nutrition. To determine biosynthesis parameters for compositions from pea protein and various protein concentrates with the use of transglutaminase enzyme, was studied effect of concentration and exposition time on the amount of amino nitrogen released during the reaction. Decreasing of amino nitrogen in the medium indicated the occurrence of a protein synthesis reaction with the formation of new covalent bonds. Were determined optimal parameters of reaction: the hydromodule, the exposure time, the concentration of EP of the preparation, were obtained mathematical models. Studies on the functional properties of composites, the physicochemical properties of the proteins that make up their composition, and structural features will make it possible to determine the uses in the manufacture of food products based on their ability to bind fat, water, form foam, gels, and etc.


2020 ◽  
Vol 286 ◽  
pp. 109241
Author(s):  
Fatemeh Izadi Yazdanabadi ◽  
Hadi Mohebalian ◽  
Gholamali Moghaddam ◽  
Mehdi Abbasabadi ◽  
Hadi Sarir ◽  
...  

2021 ◽  
Author(s):  
Saugat Prajapati ◽  
Sushil Koirala ◽  
Anil Kumar Anal

Abstract In this study, a novel feather-degrading bacteria B. amyloliquefaciens KB1 was isolated from chicken farm bed (CFB), identified by morphological, physico-biochemical tests followed by 16s rDNA analysis. Among observed isolates, bacterial isolate (KB1) showed the highest degree of feather degradation (74.78 ± 2.94 %) and total soluble protein (205 ± 0.03 mg/ g). Using the same species of bacteria, the optimum fermentation condition was found at 40 oC, pH 9, and 1 % (w/v) feather concentration that produced 260 mg/ g of soluble protein and 86.16 % feather degradation using response surface methodology in a Box-Behnken design space. The obtained hydrolysates exhibited bioactive properties. The amino acid profile showed the increase in concentration of essential amino acid compared with feather meal broth. The selection of safe screening source of this new bacteria in CFB produced hydrolysates with enhanced bioactivity applicable for food, feed, and cosmetic applications along with environmental remediation.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1637
Author(s):  
Quintino Reis de Araujo ◽  
Guilherme Amorim Homem de Abreu Loureiro ◽  
Cid Edson Mendonça Póvoas ◽  
Douglas Steinmacher ◽  
Stephane Sacramento de Almeida ◽  
...  

Free amino acids in cacao beans are important precursors to the aroma and flavor of chocolate. In this research, we used inferential and explanatory statistical techniques to verify the effect of different edaphic crop conditions on the free amino acid profile of PH-16 dry cacao beans. The decreasing order of free amino acids in PH-16 dry cacao beans is leucine, phenylalanine, glutamic acid, alanine, asparagine, tyrosine, gamma-aminobutyric acid, valine, isoleucine, glutamine, lysine, aspartic acid, serine, tryptophan, threonine, glycine. With the exception of lysine, no other free amino acid showed a significant difference between means of different edaphic conditions under the ANOVA F-test. The hydrophobic free amino acids provided the largest contribution to the explained variance with 58.01% of the first dimension of the principal component analysis. Glutamic acid stands out in the second dimension with 13.09%. Due to the stability of the biochemical profile of free amino acids in this clonal variety, it is recommended that cacao producers consider the genotype as the primary source of variation in the quality of cacao beans and ultimately the chocolate to be produced.


Sign in / Sign up

Export Citation Format

Share Document