Targeting exosomal miR-488 inhibits head and neck squamous cell carcinoma growth by mediating RAB25

2020 ◽  
Author(s):  
Xueping Wang ◽  
Xiaoyuan Zhu ◽  
Yulin Zhao

Abstract Background: Cancer cell-derived exosomes and its packaged miRNAs have been identified to regulate tumor growth and progression. However, its role in head and neck squamous cell carcinoma (HNSCC) and the potential mechanism still need to be further investigated. Methods: RNA sequencing was conducted to select the dysregulated genes in HNSCC. Gene ontology (GO) analysis and TCGA database were performed to analyze the potential candidate genes for HNSCC progression. Cell viability was analyzed using MTT, and colony formation was visualized using crystal violet staining. Luciferase reporter assay was employed to identify the interaction between miR-488 and RAB25. The role of miR-488 and RAB25 in tumor growth and drug response were investigated in vivo and in vitro. Results: The dysregulated genes in HNSCC captured the signaling of exosomes biogenesis dysfunction. Compared with the normal cells NP69, HNSCC cells had enriched exosomes and its packaged miRNAs, including miR-488. Luciferase reporter assay showed that RAB25 is a downstream target of miR-488. RAB25 was downregulated in HNSCC patients and predicted a poor prognosis. MiR-488/RAB25 signaling controlled cancer cell viability and colony formation ability in vitro and growth in vivo. Importantly, targeting miR-488 significantly inhibited tumor growth and promoted drug response to chemotherapy, suggesting a potential therapeutic promising for HNSCC. Conclusion These findings demonstrate a tumor-cell derived exosomal miR-488 promotes tumor growth by targeting RAB25 that could be targeted for HNSCC treatment.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaoqiang Chen ◽  
Chen Li ◽  
Wei Chen ◽  
Shuchun Lin ◽  
Xuehan Yi ◽  
...  

Purpose. This study aims to explore the function of metformin in hypopharyngeal squamous cell carcinoma (HSCC) and the underlying mechanism. Methods. Cell viability, colony formation, cell apoptosis, and cell cycle were investigated using cell counting kit-8 assay, colony formation, and flow cytometry assay. Gene expression was detected by quantitative real-time polymerase chain reaction and western blot. The target relationship was validated by dual-luciferase reporter assay or RNA immunoprecipitation assay. An animal study was implemented to clarify the effect of metformin in vivo. Results. Metformin suppressed HSCC cell viability and colony formation ability and induced cell cycle arrest and apoptosis, and circ_0003214 overexpression weakened these effects. Circ_0003214 regulated A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) expression via targeting miR-489-3p. Besides, miR-489-3p restoration reversed the role of circ_0003214, and ADAM10 knockdown reversed miR-489-3p inhibition-mediated effect. Moreover, metformin blocked tumor growth via the circ_0003214-miR-489-3p-ADAM10 axis in vivo. Conclusion. Metformin inhibits HSCC progression through the circ_0003214/miR-489-3p/ADAM10 pathway.


Author(s):  
Pan Wang ◽  
Zhuanbo Yang ◽  
Ting Ye ◽  
Fei Shao ◽  
Jiagen Li ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) are involved in the progression of various cancers and affect the response to radiotherapy. This study focused on clarifying the underlying mechanism by which lncTUG1 affects the radiosensitivity of esophageal squamous cell carcinoma (ESCC). Methods lncTUG1, miR-144-3p and MET expression levels were detected in ESCC tissues and cells by qRT-PCR. Western blotting was used to examine the protein levels of MET, p-AKT and EGFR. The dual-luciferase reporter system and RNA immunoprecipitation (RIP) assays were used to confirm the interaction between lncTUG1 and miR-144-3p or miR-144-3p and MET. MTT, colony formation and flow cytometry assays were applied to examine the behavioral changes in EC9706 and KYSE30 cells. Results lncTUG1 was upregulated in ESCC cells and tissues, and lncTUG1 expression was associated with an advanced pathological stage. The bioinformatics analysis revealed that lncTUG1 could specifically bind to miR-144-3p, which was downregulated in ESCC. There was a negative correlation between lncTUG1 and miR-144-3p. LncTUG1 inhibition retarded proliferation and colony formation and induced apoptosis in ESCC cells. Moreover, lncTUG1 knockdown dramatically improved the effect of radiotherapy on ESCC development both in vivo and in vitro. Furthermore, MET was revealed as a downstream target of miR-144-3p and is downregulated by it. LncTUG1 promoted the progression of ESCC and elevated radiotherapy resistance in ESCC cells, accompanied by a high level of MET expression. Moreover, we found that knockdown of lncTUG1 enhanced the radiosensitivity of ESCC cells via the p-AKT signaling pathway. Conclusion Our results indicate that lncTUG1 enhances the radiotherapy resistance of ESCC by lowering the miR-144-3p level and modulating the MET/EGFR/AKT axis.


Life Sciences ◽  
2021 ◽  
Vol 278 ◽  
pp. 119541
Author(s):  
Aysegul Gorur ◽  
Miguel Patiño ◽  
Hideaki Takahashi ◽  
German Corrales ◽  
Curtis R. Pickering ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Zhou ◽  
Shuhong Zhang ◽  
Zhonghan Min ◽  
Zhongwei Yu ◽  
Huaiwei Zhang ◽  
...  

Abstract Background Circular RNAs (circRNAs) are implicated in the development of oral squamous cell carcinoma (OSCC). The aim of current research is to elucidate the role and mechanism of circ_0011946 in the functional behaviors of OSCC cells. Methods Circ_0011946, microRNA (miR)-216a-5p, B cell lymphoma-2-like 2 protein (BCL2L2) abundances were exposed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or western blot. Cell proliferation, migration, invasion and apoptosis were detected by MTT, colony formation assay, transwell, wound-healing and flow cytometry assays, respectively. Target correlation was tested by dual-luciferase reporter and RNA pull-down assays. An in vivo xenograft experiment was employed to investigate the function of circ_0011946 on tumor growth in vivo. Results Circ_0011946 and BCL2L2 levels were increased, while miR-216a-5p level was decreased in OSCC tissues and cells. Circ_0011946 knockdown impeded proliferation, migration, and invasion, but promoted apoptosis in OSCC cells. Circ_0011946 functioned as a sponge for miR-216a-5p, and BCL2L2 was targeted by miR-216a-5p. Besides, miR-216a-5p or BCL2L2 knockdown partly attenuated the inhibitory influences of circ_0011946 silence or miR-216a-5p overexpression on OSCC cell progression. Furthermore, circ_0011946 post-transcriptionally regulated BCL2L2 through sponging miR-216a-5p. Moreover, circ_0011946 knockdown constrained OSCC tumor growth in vivo. Conclusion Circ_0011946 silence repressed OSCC cell proliferation, migration, and invasion, but promoted apoptosis through the regulation of the miR-216a-5p/BCL2L2 axis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodan Wu ◽  
Yihui Fan ◽  
Yupeng Liu ◽  
Biao Shen ◽  
Haimin Lu ◽  
...  

Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.


Author(s):  
Zhirong Li ◽  
Xuebo Qin ◽  
Wei Bian ◽  
Yishuai Li ◽  
Baoen Shan ◽  
...  

Abstract Background In recent years, long non-coding RNAs (lncRNAs) are of great importance in development of different types of tumors, while the function of lncRNA ZFAS1 is rarely discussed in esophageal squamous cell carcinoma (ESCC). Therefore, we performed this study to explore the expression of exosomal lncRNA ZFAS1 and its molecular mechanism on ESCC progression. Methods Expression of ZFAS1 and miR-124 in ESCC tissues was detected. LncRNA ZFAS1 was silenced to detect its function in the biological functions of ESCC cells. A stable donor and recipient culture model was established. Eca109 cells transfected with overexpressed and low expressed ZFAS1 plasmid and miR-124 inhibitor labeled by Cy3 were the donor cells, and then co-cultured with recipient cells to observe the transmission of Cy3-ZFAS1 between donor cells and recipient cells. The changes of cell proliferation, apoptosis, invasion, and migration in recipient cells were detected. The in vivo experiment was conducted for verifying the in vitro results. Results LncRNA ZFAS1 was upregulated and miR-124 was down-regulated in ESCC tissues. Silencing of ZFAS1 contributed to suppressed proliferation, migration, invasion and tumor growth in vitro and induced apoptosis of ESCC cells. LncRNA ZFAS1 was considered to be a competing endogenous RNA to regulate miR-124, thereby elevating STAT3 expression. Exosomes shuttled ZFAS1 stimulated proliferation, migration and invasion of ESCC cells and restricted their apoptosis with increased STAT3 and declined miR-124. Furthermore, in vivo experiment suggested that elevated ZFAS1-exo promoted tumor growth in nude mice. Conclusion This study highlights that exosomal ZFAS1 promotes the proliferation, migration and invasion of ESCC cells and inhibits their apoptosis by upregulating STAT3 and downregulating miR-124, thereby resulting in the development of tumorigenesis of ESCC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ying Zheng ◽  
Bowen Zheng ◽  
Xue Meng ◽  
Yuwen Yan ◽  
Jia He ◽  
...  

Abstract Background Tongue squamous cell carcinoma (TSCC) is a most invasive cancer with high mortality and poor prognosis. It is reported that lncRNA DANCR has implications in multiple types of cancers. However, its biological role and underlying mechanism in TSCC progress are not well elucidated. Methods Our present study first investigated the function of DANCR on the proliferation, migration and invasion of TSCC cells by silencing or overexpressing DANCR. Further, the miR-135a-5p-Kruppel-like Factor 8 (KLF8) axis was focused on to explore the regulatory mechanism of DANCR on TSCC cell malignant phenotypes. Xenografted tumor growth using nude mice was performed to examine the role of DANCR in vivo. Results DANCR knockdown reduced the viability and inhibited the migration and invasion of TSCC cells in vitro, while ectopic expression of DANCR induced opposite effects. In vivo, the tumor growth and the expression of matrix metalloproteinase (MMP)-2/9 and KLF8 were also blocked by DANCR inhibition. In addition, we found that miR-135-5p directly targeted DANCR, which was negatively correlated with DANCR on TSCC progression. Its inhibition reversed the beneficial effects of DANCR silence on TSCC malignancies. Furthermore, the expression of KLF8 evidently altered by both DANCR and miR-135a-5p. Silencing KLF8 using its specific siRNA showed that KLF8 was responsible for the induction of miR-135a-5p inhibitor on TSCC cell malignancies and MMP-2/9 expression. Conclusions These findings, for the first time, suggest that DANCR plays an oncogenic role in TSCC progression via targeting miR-135a-5p/KLF8 axis, which provides a promising biomarker and treatment approach for preventing TSCC.


Author(s):  
Xiaobin Guo ◽  
Rui Zhu ◽  
Aiping Luo ◽  
Honghong Zhou ◽  
Fang Ding ◽  
...  

Abstract Background Overexpression of eukaryotic translation initiation factor 3H (EIF3H) predicts cancer progression and poor prognosis, but the mechanism underlying EIF3H as an oncogene remains unclear in esophageal squamous cell carcinoma (ESCC). Methods TCGA database and the immunohistochemistry (IHC) staining of ESCC samples were used and determined the upregulation of EIF3H in ESCC. CCK8 assay, colony formation assay and transwell assay were performed to examine the ability of cell proliferation and mobility in KYSE150 and KYSE510 cell lines with EIF3H overexpression or knockdown. Xenograft and tail-vein lung metastatic mouse models of KYSE150 cells with or without EIF3H knockdown were also used to confirm the function of EIF3H on tumor growth and metastasis in vivo. A potential substrate of EIF3H was screened by co-immunoprecipitation assay (co-IP) combined with mass spectrometry in HEK293T cells. Their interaction and co-localization were confirmed using reciprocal co-IP and immunofluorescence staining assay. The function of EIF3H on Snail ubiquitination and stability was demonstrated by the cycloheximide (CHX) pulse-chase assay and ubiquitination assay. The correlation of EIF3H and Snail in clinical ESCC samples was verified by IHC. Results We found that EIF3H is significantly upregulated in esophageal cancer and ectopic expression of EIF3H in ESCC cell lines promotes cell proliferation, colony formation, migration and invasion. Conversely, genetic inhibition of EIF3H represses ESCC tumor growth and metastasis in vitro and in vivo. Moreover, we identified EIF3H as a novel deubiquitinating enzyme of Snail. We demonstrated that EIF3H interacts with and stabilizes Snail through deubiquitination. Therefore, EIF3H could promote Snail-mediated EMT process in ESCC. In clinical ESCC samples, there is also a positive correlation between EIF3H and Snail expression. Conclusions Our study reveals a critical EIF3H-Snail signaling axis in tumor aggressiveness in ESCC and provides EIF3H as a promising biomarker for ESCC treatment.


2020 ◽  
Author(s):  
Hu Zhang ◽  
Enchun Pan ◽  
Ying Zhang ◽  
Chao Zhao ◽  
Qiwei Liu ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are abnormally expressed in a broad type of cancers and play significant roles that regulate tumor development and metastasis. However, the pathological roles of lncRNAs in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Here we aimed to investigate the role and regulatory mechanism of the novel lncRPL34-AS1 in the development and progression of ESCC. Methods: The expression level of lncRPL34-AS1 in ESCC tissues and different cell lines was determined by quantitative real-time PCR (RT-qPCR). Chromatin immunoprecipitation (ChIP) assay was used to evaluate the regulatory effect of histone modification on lncRPL34-AS1. Then, functional experiments in vitro and in vivo were employed to explore the effects of lncRPL34-AS1 on tumor growth and metastasis in ESCC. Mechanistically, fluorescence in situ hybridization (FISH), bioinformatics analyses, luciferase reporter assay, RNA immunoprecipitation (RIP) assay and western blot assays were used to detect the regulatory relationship between lncRPL34-AS1, miR-575 and ACAA2. In addition, comprehensive identification of RNA binding proteins (ChIRP), mass spectrometry, and RIP assay were used to identify lncRPL34-AS1-interacting proteins.Results: LncRPL34-AS1 was significantly down-regulated in ESCC tissues and cells, which was negatively correlated with overall survival in ESCC patients. The chromatin immunoprecipitation (ChIP) assays indicated that gain of H3K4me3 and H3K27 acetylation-activated lncRPL34-AS1 was down-regulated in ESCC. Functionally, upregulation of lncRPL34-AS1 dramatically suppressed ESCC cell proliferation, colony formation, cell cycle progression and induced apoptosis in vitro, whereas knockdown of lncRPL34-AS1 elicited the opposite function. Consistently, overexpression of lncRPL34-AS1 inhibited tumor growth and metastasis in vivo. Mechanistically, lncRPL34-AS1 acted as competing endogenous RNA (ceRNA) of miR-575 to relieve the repressive effect of miR-575 on its target ACAA2, then suppressed the tumorigenesis of ESCC. In addition, protein ALOX12B and CAT resulted direct binding targets of lncRPL34‐AS1 and affected biological process in ESCC. Conclusions: Together, our results reveal a role for lncRPL34-AS1 in ESCC tumorigenesis and may provide a strategy for using lncRPL34-AS1 as a potential biomarker and a therapeutic target for patients with ESCC.


Sign in / Sign up

Export Citation Format

Share Document