scholarly journals An Enhanced routing Technique to improve the Network Lifetime of Cognitive Sensor Network

Author(s):  
V Jyothi ◽  
M.V. Subramanyam

Abstract In terms of using the technology of Cognitive Radio (CR), a Cognitive Sensor Network (CSN) is varied from the conventional Wireless Sensor Networks (WSNs). According to the interaction with the surrounding environment, the transmitter parameters can be modified in the sensor nodes of CSN adaptively. In CSNs, routing is one of the important components. Based on the capability of spectrum-aware, the schemes of routing of CSNs are district from other networks. The changeable spectrum resource dynamically should be understood by the routing scheme to establish a path of reliable forwarding by the adjustment of routing policy adaptively. In CSNs, reliable routing is an essential thing but still not a well-explored problem in CSNs. Packet drops due to spectrum unavailability and buffer overflows seriously affects the connectivity of the nodes. The whole network’s lifetime and the data delivery rate are impacted by the prolonging packet drops. To increase the nodes’ lifetime, the addressing of this drawback in the phase of routing should be done. Before the making of routing decisions, a new routing technique is proposed named as Drop factor based energy efficient routing technique (DFBEER) with the use of packet drop ratio and power dissipation metric of the spectrum links. With the total number of users in the routing path, the drop factor is computed. Power dissipation is calculated based on the transmitted data packets versus the amount of total consumed energy. This method reduces the drop ratio by avoiding the high drop factor nodes from being participating in the routing process. It always ensures that the data would be handled by the low dropping ratio nodes, thus the network’s lifetime is improved.

Wireless sensor network consists of various sensor nodes connected through wireless media. Sensor nodes are tiny devices having lesser energy capabilities. Sensor nodes are either ad-hoc or mobile in their environment. Wireless sensor network route of transmission media is discovered by routing protocols and responsible for secure communication between sensor nodes. Energy is a precious resource of sensor nodes, and the entire lifetime of WSNs is depending on the energy capability of the sensor nodes. The fundamental problem is how to organize topology of WSN for deployed sensor nodes with lesser power consumption as possible. Major problems in wireless sensor networks which consume extra energy are interference, control message overhead, packet delay, unnecessary transmission, and bandwidth utilization. Therefore, energy efficient techniques are needed to overcome these problems. Hierarchical routing is the best routing method for finding optimal path between sensor nodes which enhance the lifetime of the network. This paper focuses towards various hierarchical energy efficient routing in wireless sensor networks and analyzes various features of WSN that should consider during designing of routing protocols.


Author(s):  
Tanya Pathak ◽  
Vinay Kumar Singh ◽  
Anurag Sharma

In the recent years, an efficient design of a Wireless Sensor Network has become important in the area of research. The major challenges in the design of Wireless Sensor Network is to improve the network lifetime. The main difficulty for sensor node is to survive in that monitoring area for the longer time that means there is a need to increase the lifetime of the sensor nodes by optimizing the energy and distance. There are various existing routing protocols in which optimal routing can be achieved like Data-Centric, Hierarchical and Location-based routing protocols. In this paper, new power efficient routing protocol is being proposed that not only select the shortest path between the source node and sink node for data transmission but also maximizes the lifetime of the participating nodes by selecting the best path for sending the data packet across the network. The main objective of this research is to develop a faster algorithm to find the energy efficient route for Wireless Sensor Network. Simulation results shows that this strategy achieves long network lifetime when compared to the other standard protocols.


The technological advances in wireless communication systems and digital data processing techniques has given rise to many innovative intelligent networks. One such network is wireless sensor network (WSN). In recent past, huge growth has been perceived in the applications of WSN. In wireless sensor network, the battery powered sensor nodes are scattered in a monitoring area and it is impossible to replace the batteries of sensor nodes after deployment. Therefore, energy efficiency remains a prime concern in design of WSNs. The routing protocols help to find energy efficient routes and increases the lifetime of WSNs. The cluster-based routing techniques play an important role in design of energy efficient WSNs. However, authors analyzed two types of sensor networks in the literature such as homogeneous and heterogeneous networks. In homogeneous clustering, all sensor nodes possess same level of initial energy and cluster head (CH) formation probability of each node in such networks remains equal. In heterogeneous clustering, the nodes are bifurcated into three energy levels such as normal node, advanced node and super node. Therefore, the CH formation probability of a node in such network depends on the type of node. This paper presented a survey on recent energy efficient routing protocols in homogeneous as well as heterogeneous wireless sensor networks. The energy efficient routing protocols are classified based on some quality of service (QoS) metrics such as energy efficiency, network lifetime, network stability, cluster head selection threshold and heterogeneity levels.


Author(s):  
Ravneet Pal Kaur ◽  
Maninder Singh

In wireless sensor network, the sensor nodes find the route towards the sink to transmit the sensory information such as temperature, pressure etc of a particular area. The sensor nodes transmit the data directly to sink or it relays the data through neighbor nodes using single or multi-hop links. Each time when nodes send their data to static sink, the data is passed through the nearer nodes of sink to it. As soon as the nodes near to the sink become dead, the entire network will be useless as there will be no communication to the sink node. So, to conserve the energy we use mobile sink approach. Thus with the inclusion of mobile sink in WSN, new paradigm called mobile wireless sensor network came into existence. In this paper, to conserve energy and to perform energy efficient routing, we have proposed chain-based energy efficient routing scheme for mobile wireless sensor network (CB-EERM)which is using mobile sink and media access approach where sink moves from one position to another position in sensor field and sojourn at a particular location to collect the whole aggregated data from the various  leader(aggregator)nodes in chain using media access approach. The proposed mobile scheme CB-EERM is validated through simulation and compared with traditional static approach using metrics such as energy consumption, throughput, delay and packet delivery ratio where proposed approach outperforms the existing scheme.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 216 ◽  
Author(s):  
Humera Khan

Wireless Sensor Network is a widely growing field and it comprises of tiny sensor nodes. These sensor nodes are distributed in the environment spatially. They are capable of sensing the environment, gathering the information and processing it. Each sensor node collaborate with other sensor nodes for processing the information. Sensor nodes have very limited resources available for their operation. For the purpose of consuming resources in an efficient way several routing algorithms are employed. Here the focus is mainly on hierarchical cluster based routing techniques. In this paper we provide an introduction for wireless sensor network, the requirement for reduction in energy consumption of sensor nodes and some of the already existing energy efficient routing protocols of wireless sensor network.


2012 ◽  
Vol 433-440 ◽  
pp. 1065-1070
Author(s):  
Han Li

In wireless sensor network, there are many hurdles takes place in providing quality of service routing to a desired level. The majority of routing protocols in wireless sensor networks concentrates on energy efficiency as a prime factor. Developing an energy–efficient routing protocol has a significant impact on the overall lifetime and stability of the sensor network. In this paper, we have considered three types of sensor nodes. Some fraction of the sensor nodes are equipped with the additional energy resources than the other nodes. We have assumed that all the sensor nodes are uniformly distributed. In the Heterogeneous WSN, we proposed an energy efficient cluster head election protocol and using the improved Prim’s algorithm to construct an inter-cluster routing. Simulation results show out method is more efficient to reduce and balance energy consumption and hence prolong the lifetime of WSN.


2017 ◽  
Vol 7 (1.2) ◽  
pp. 171
Author(s):  
Varsha Bhatia ◽  
Sunita Kumawat ◽  
Vivek Jaglan

Wireless Sensors network is a type of wireless network, used in diverse applications and has its own set of challenges. Apart from organizing and managing WSN, the main challenges include limited resources, dynamic topology and low scalability. Wireless Sensor nodes are battery operated, so energy scarceness is a major concern. The energy consumption is maximal at the time of data transmission between network devices or nodes. Various energy conservation schemes are applied in WSN; Energy Efficient Routing is one of the possible solutions. Energy Efficient Routing is used to minimize the maintenance cost of the network and maximize the performance of the node. In this paper different hierarchical cluster based routing protocols are discussed.


Sign in / Sign up

Export Citation Format

Share Document