scholarly journals SlGT11 Controls Floral Organ Patterning and Floral Determinacy in Tomato

2020 ◽  
Author(s):  
Liling Yang ◽  
Shilian Qi ◽  
Arfa touqeer ◽  
Haiyang Li ◽  
Xiaolan Zhang ◽  
...  

Abstract Background: Flower development directly affects fruit production in tomato. Despite the framework mediated by ABC genes have been established in Arabidopsis, the spatiotemporal precision of floral development in tomato has not been well examined.Results: Here, we analyzed a novel tomato stamenless like flower (slf) mutant in which the development of stamens and carpels is disturbed, with carpelloid structure formed in the third whorl and ectopic formation of floral and shoot apical meristem in the fourth whorl. Using bulked segregant analysis (BSA), we assigned the causal mutation to the gene Solanum lycopersicum GT11 (SlGT11) that encodes a transcription factor belonging to Trihelix gene family. SlGT11 is expressed in the early stages of the flower and the expression becomes more specific to the primordium position corresponding to stamens and carpels in later stages of the floral development. Further RNAi silencing of SlGT11 verifies the defective phenotypes of the slf mutant. The carpelloid stamen in slf mutant indicates that SlGT11 is required for B-function activity in the third whorl. The failed termination of floral meristem and the occurrence of floral reversion in slf indicate that part of the C-function requires SlGT11 activity in the fourth whorl. Furthermore, we find that at higher temperature, the defects of slf mutant are substantially enhanced, with petals transformed into sepals, all stamens disappeared, and the frequency of ectopic shoot/floral meristem in fourth whorl increased, indicating that SlGT11 functions in the development of the three inner floral whorls. Consistent with the observed phenotypes, it was found that B, C and an E-type MADS-box genes were in part down regulated in slf mutants.Conclusions: Together with the spatiotemporal expression pattern, we suggest that SlGT11 functions in floral organ patterning and maintenance of floral determinacy in tomato.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Liling Yang ◽  
Shilian Qi ◽  
Arfa Touqeer ◽  
Haiyang Li ◽  
Xiaolan Zhang ◽  
...  

Abstract Background Flower development directly affects fruit production in tomato. Despite the framework mediated by ABC genes have been established in Arabidopsis, the spatiotemporal precision of floral development in tomato has not been well examined. Results Here, we analyzed a novel tomato stamenless like flower (slf) mutant in which the development of stamens and carpels is disturbed, with carpelloid structure formed in the third whorl and ectopic formation of floral and shoot apical meristem in the fourth whorl. Using bulked segregant analysis (BSA), we assigned the causal mutation to the gene Solanum lycopersicum GT11 (SlGT11) that encodes a transcription factor belonging to Trihelix gene family. SlGT11 is expressed in the early stages of the flower and the expression becomes more specific to the primordium position corresponding to stamens and carpels in later stages of the floral development. Further RNAi silencing of SlGT11 verifies the defective phenotypes of the slf mutant. The carpelloid stamen in slf mutant indicates that SlGT11 is required for B-function activity in the third whorl. The failed termination of floral meristem and the occurrence of floral reversion in slf indicate that part of the C-function requires SlGT11 activity in the fourth whorl. Furthermore, we find that at higher temperature, the defects of slf mutant are substantially enhanced, with petals transformed into sepals, all stamens disappeared, and the frequency of ectopic shoot/floral meristem in fourth whorl increased, indicating that SlGT11 functions in the development of the three inner floral whorls. Consistent with the observed phenotypes, it was found that B, C and an E-type MADS-box genes were in part down regulated in slf mutants. Conclusions Together with the spatiotemporal expression pattern, we suggest that SlGT11 functions in floral organ patterning and maintenance of floral determinacy in tomato.


2020 ◽  
Author(s):  
Liling Yang ◽  
Shilian Qi ◽  
Arfa touqeer ◽  
Haiyang Li ◽  
Xiaolan Zhang ◽  
...  

Abstract Background: Flower development directly affects fruit production in tomato. Despite the framework mediated by ABC genes have been established in Arabidopsis, the spatiotemporal precision of floral development in tomato has not been well examined.Results: Here, we analyzed a novel tomato stamenless like flower (slf) mutant in which the development of stamens and carpels is disturbed, with carpelloid structure formed in the third whorl and ectopic formation of floral and shoot apical meristem in the fourth whorl. Using bulked segregant analysis (BSA), we assigned the causal mutation to the gene Solanum lycopersicum GT11 (SlGT11) that encodes a transcription factor belonging to Trihelix gene family. SlGT11 is expressed in the early stages of the flower and the expression becomes more specific to the primordium position corresponding to stamens and carpels in later stages of the floral development. Further RNAi silencing of SlGT11 verifies the defective phenotypes of the slf mutant. The carpelloid stamen in slf mutant indicates that SlGT11 is required for B-function activity in the third whorl. The failed termination of floral meristem and the occurrence of floral reversion in slf indicate that part of the C-function requires SlGT11 activity in the fourth whorl. Furthermore, we find that at higher temperature, the defects of slf mutant are substantially enhanced, with petals transformed into sepals, all stamens disappeared, and the frequency of ectopic shoot/floral meristem in fourth whorl increased, indicating that SlGT11 functions in the development of the three inner floral whorls. Consistent with the observed phenotypes, it was found that B, C and an E-type MADS-box genes were in part down regulated in slf mutants.Conclusions: Together with the spatiotemporal expression pattern, we suggest that SlGT11 functions in floral organ patterning and maintenance of floral determinacy in tomato.


2020 ◽  
Author(s):  
Liling Yang ◽  
Shilian Qi ◽  
Arfa touqeer ◽  
Haiyang Li ◽  
Xiaolan Zhang ◽  
...  

Abstract Background: Flower development directly affects fruit production in tomato. Despite the framework mediated by ABC genes have been established in Arabidopsis, the spatiotemporal precision of floral development in tomato has not been well examined.Results: Here, we analyzed a novel tomato stamenless like flower (slf) mutant in which the development of stamens and carpels is disturbed, with carpelloid structure formed in the third whorl and ectopic formation of floral and shoot apical meristem in the fourth whorl. Using bulked segregant analysis (BSA), we assigned the causal mutation to the gene Solanum lycopersicum GT11 (SlGT11) that encodes a transcription factor belonging to Trihelix gene family. SlGT11 is expressed in the early stages of the flower and the expression becomes more specific to the primordium position corresponding to stamens and carpels in later stages of the floral development. Further RNAi silencing of SlGT11 verifies the defective phenotypes of the slf mutant. The carpelloid stamen in slf mutant indicates that SlGT11 functions like as a B-type gene in the third whorl. The failed termination of floral meristem and the occurrence of floral reversion in slf indicate that SlGT11 also functions as a C-type gene in the fourth whorl. Furthermore, we find that at higher temperature, the defects of slf mutant are substantially enhanced, with petals transformed into sepals, all stamens disappeared, and the frequency of ectopic shoot/floral meristem in fourth whorl increased, indicating that SlGT11 may have the function of tomato B and E class gene in the development of second and fourth whorls.Conclusions: Together with the spatiotemporal expression pattern, we suggest that SlGT11 functions in floral organ patterning and maintenance of floral determinacy in tomato.


2020 ◽  
Author(s):  
Liling Yang ◽  
Shilian Qi ◽  
Arfa touqeer ◽  
Haiyang Li ◽  
Shuang Wu

Abstract Background: Flower development affects fruit production directly in tomato. Despite the framework mediated by ABC genes have been established in Arabidopsis, the spatiotemporal precision of floral development in tomato has not been well examined.Results: Here, we analyzed a novel tomato mutant in which the normal development of stamens and carpels failed, resulting in ectopic formation of floral and shoot apical meristem in the fourth whorl position, which later developed into stem- and leaf-like structures. Using bulked segregant analysis (BSA), we assigned the causal mutation to the gene SLGT11 that encodes a transcription factor belonging to Trihelix gene family. Further RNAi silencing of SLGT11 verified the defective phenotypes of slf mutant. The failed termination of floral meristem and the occurrence of floral reversion in slf mutant indicate that SLGT11 functions as a non-canonical C type gene. Furthermore, we found that the defects in slf were substantially enhanced at higher temperature, with petals transformed into sepals, all stamens disappeared, and increased frequency of ectopic floral meristem.Conclusions: Together with the spatiotemporal expression pattern, we suggest that SLGT11 functions in floral organ patterning and termination of floral meristem identity in tomato.


1973 ◽  
Vol 51 (3) ◽  
pp. 647-656 ◽  
Author(s):  
U. Posluszny ◽  
R. Sattler

The floral appendages of Potamogeton densus are initiated in an acropetal sequence. The first primordia to be seen externally are those of the lateral tepals, though sectioning young floral buds (longitudinally, parallel to the inflorescence axis) reveals initial activity in the region of the lower median (abaxial) tepal and stamen at a time when the floral meristem is not yet clearly demarcated. The lateral (transversal) stamens are initiated simultaneously and unlike the median stamens each arises as two separate primordia. The upper median (adaxial) tepal and stamen develop late in relation to the other floral appendages, and in some specimens are completely absent. Rates of growth of the primordia vary greatly. Though the lower median tepal and stamen are initiated first, they grow slowly up to gynoecial inception, while the upper median tepal appears late in the developmental sequence but grows rapidly, soon overtaking the other tepal primordia. The four gynoecial primordia arise almost simultaneously, although variation in their sequence of inception occurs. The two-layered tunica of the floral apices gives rise to all floral appendages through periclinal divisions in the second layer. The third layer (corpus) is involved as well in the initiation of the stamen primordia. Procambial strands develop acropetally, lagging behind primordial initiation. The lateral stamens though initiating as two primordia each form a single, central procambial strand, which differentiates after growth between the two primordia of the thecae has occurred. A great amount of deviation from the normal tetramerous flower is found, including completely trimerous flowers, trimerous gynoecia with tetramerous perianth and androecium, and organs differentiating partially as tepals and partially as stamens.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 536d-536
Author(s):  
Rina Kamenetsky

The influence of postharvest temperature on the flowering response of Eremurus was studied. The plants were harvested at four different stages of development and were separated into three groups. The first group was immediately exposed to 2 °C, the second group to 20 °C followed by 2 °C, and the third group to 20 °C followed by 32 °C and, subsequently, 2 °C. Scanning electron microscopy (SEM) was used for concurrent morphological analysis of floral development. Application of 2 °C to the plants in the initial stage of floral development caused plant destruction and death, while the same treatment applied at the stage of full differentiation promoted normal flowering. Temperatures of 20 °C and, especially, 32 °C, significantly improved flowering of the plants harvested in the early stages of florogenesis, whereas the same treatment applied to the plants harvested at the end of flower differentiation did not affect the flowering process. A developmental disorder, which we term “Interrupted Floral Development” (IFD), was observed only in the plants harvested when the racemes were fully differentiated. This was probably caused by the very high air and soil temperatures that prevail in Israel during the summer. The extent of floral differentiation has a determinant role in subsequent scape elongation and flowering.


2015 ◽  
Vol 33 (4) ◽  
pp. 453-458 ◽  
Author(s):  
Tania P Silva ◽  
Fernando L Finger

ABSTRACT: This work describes ethylene and 1-methylcyclopropene (1-MCP) action on post-harvest shelf life of four development stages of nasturtium flowers. To reach this goal, we carried out three experiments. In the first and second experiments, we studied five ethylene (0; 0.1; 1; 10; 100 and 1000 μL/L) and three 1-MCP concentrations (0.25; 0.5 and 0.75 μL/L), respectively. In the third experiment, 1-MCP was followed by combined with ethylene (only 1-MCP; only ethylene; and 24 hours of exposure to 0.75 μL/L 1-MCP followed by 24 hours of exposure to 100 μL/L ethylene). All experiments had two control treatments, one keeping non-exposed flowers inside and another outside exposure chambers. Experiments were set in factorial design, in complete blocks at random, with four 10-flower replications each. Flower senescence was determined by a pre-established visual scale and by observing floral bud development. Ethylene dose above 10 μL/L induced flower wilting and premature senescence from the second floral development stage. Furthermore, higher concentrations of exogenous ethylene promoted irregular flower opening and/or morphological abnormalities in opened flowers. 1-MCP effectively extended post-harvest longevity of nasturtium flowers, independent of the concentration and even in the presence of exogenous ethylene.


1993 ◽  
Vol 71 (1) ◽  
pp. 74-86 ◽  
Author(s):  
James R. Kemp ◽  
Usher Posluszny ◽  
Jean M. Gerrath ◽  
Peter G. Kevan

The development of the flower of Rosa setigera from initiation to the onset of anthesis is described. Rosa setigera is the only known member of the genus Rosa to exhibit dioecy. Flowers of functionally staminate (male) and functionally carpellate (female) plants appear identical, a condition referred to as cryptic dioecy. Discrete sepals and petals are formed on the floral meristem. As the hypanthium forms, stamens are initiated in alternating whorls on the wall of the hypanthium and continue to develop as the hypanthium extends. Carpel primordia arise individually on the remainder of the floral meristem and show neither adnation to the hypanthial wall nor coalescence to one another as they give rise to the styles and stigmas that are exserted above the hypanthium lip. The only observable fusion in this species appears to be the postgenital fusion of the margins of the carpel primordia to form the enclosed locule. Although historically the hypanthium has been variously interpreted as either axial and (or) appendicular in nature, resulting from congenital fusion of sepals, petals, and stamens, this paper uses a more realistic, testable and functional approach to the development of the hypanthium that is in keeping with current concepts such as process morphology. Key words: Rosa setigera, dioecy, floral development, fusion, hypanthium.


1977 ◽  
Vol 55 (9) ◽  
pp. 1106-1120 ◽  
Author(s):  
V. Singh ◽  
R. Sattler

The primordia of the floral appendages are initiated in an acropetal succession. Members of the same whorl appear nearly simultaneously. The gynoecial whorl and the two staminal whorls are trimerous, whereas the perianth consists only of two anteriolateral tepals. However, the posterior (adaxial) tepal may be present as an extremely reduced buttress whose growth becomes arrested immediately after its inception. If this somewhat questionable tepal rudiment is included we have a perfectly trimerous and tetracyclic flower with alternation of successive whorls. Subtending bracts of the flowers are completely missing in all developmental stages. While the tepal primordia are dorsiventral from their inception, the stamen and pistil (carpel) primordia originate as hemispherical mounds which become dorsiventral in subsequent stages of development. Each pistil (carpel) primordium becomes horseshoe shaped. As the margins grow up and contact they fuse postgenitally. No cross zone is formed. Placentation is submarginal. In A. natans eight ovules are formed and in A. undulatus only two arise; all ovules are bitegmic. The floral apices have a two-layered tunica up to the stage of pistil formation. The inception of all floral appendages (including the ovules) occurs by periclinal cell division in the second tunica layer. The third layer (corpus) may contribute to the formation of the stamens and pistils. Each appendage primordium receives only one procambial strand which begins to differentiate after the inception of the primordium. The questionable rudimentary tepal buttress lacks a procambial strand. Apparently it does not reach the developmental stage at which procambial induction occurs. From the point of view of floral development, the two species of Aponogeton differ drastically from members of the Alismatales studied so far. Among the Helobiae, the Aponogetonaceae appear to be most closely related to the Scheuchzeriaceae and the Juncaginaceae (Triglochinaceae).


2011 ◽  
Vol 24 (12) ◽  
pp. 1502-1512 ◽  
Author(s):  
Yi-Ting Su ◽  
Jen-Chih Chen ◽  
Chan-Pin Lin

Floral symptoms caused by phytoplasma largely resemble floral reversion in other plants. Periwinkle leaf yellowing (PLY) phytoplasma and peanut witches'-broom (PnWB) phytoplasma caused different degrees of floral abnormalities on infected periwinkle plants. The PLY phytoplasma-infected plants exhibited floral discoloration, virescence, small flowers, and only occasionally full floral reversion. In contrast, PnWB phytoplasma frequently induced complete floral reversion and resulted in a witches'-broom symptom from the floral reversion. Although different degrees of floral symptoms were induced by these two phytoplasmas, the morphological disorders were similar to those of other plants carrying SEPALLATA mutations or gene silencing. Here, we compared expression levels of organ-identity-related genes and pigmentation genes during floral symptom development. Accumulation of phytoplasmas in malformed flowers and their closely surrounding leaves was also compared. In infected plants, transcript abundance of all examined organ identity genes and pigmentation genes was suppressed. Indeed, CrSEP3, a SEPALLALA3 ortholog, showed the greatest suppression among genes examined. Of the pigmentation genes, transcript reduction of chalcone synthase was most highly correlated with the loss in floral pigmentation. Floral symptom severities were associated with the accumulation of either phytoplasmas. Interestingly, both phytoplasmas accumulated to higher levels in malformed flowers than in their surrounding leaves. Many plant pathogens manipulate host plant development to their advantage. It is intriguing to see whether phytoplasmas alter floral development to increase their population.


Sign in / Sign up

Export Citation Format

Share Document