scholarly journals Occurrence and Potentially Zoonotic Genotypes of Enterocytozoon Bieneusi in Wild Rhesus Macaques (Macaca Mulatta) Living in Nanwan Monkey Island, Hainan, China: A Public Health Concern

Author(s):  
Wei Zhao ◽  
Huan-Huan Zhou ◽  
Guang-Xu Ren ◽  
Yu Qiang ◽  
Hui-Cong Huang ◽  
...  

Abstract Background Enterocytozoon bieneusi, a microsporidian species, is a zoonotic pathogen found in both humans and animals. Here, we determined the prevalence, explored the different genotypes of E. bieneusi in wild rhesus macaques (Macaca mulatta) (Hainan Island of China), and assessed their zoonotic potential. Methods We collected 173 fecal specimens from wild M. mulatta living in Nanwan Monkey Island, Hainan, China. Subsequently, we identified and genotyped E. bieneusi using nested PCR analysis amplification of the internal transcribed spacer region (ITS) of the rRNA gene. Lastly, a neighbor-joining tree was built based on gene sequences from the ITS region of E. bieneusi. Results Of the 173 specimens from wild M. mulatta, 26 (15%) were infected with E. bieneusi. We identified six genotypes of E. bieneusi, of which five were known: PigEBITS7 (n = 20), D (n = 2), Type IV (n = 1), Peru6 (n = 1), Henan-III (n = 1), and a novel genotype: HNM-IX (n = 1). From the phylogenetic analysis, the six genotypes identified here were all categorized into zoonotic group 1. Conclusion Based on the results taht the novel genotype falling under zoonotic group 1 and all the known genotypes found in humans, we conclude that the wild M. mulatta infected with E. bieneusi have a public health significance.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Wei Zhao ◽  
Huan-Huan Zhou ◽  
Guang-Xu Ren ◽  
Yu Qiang ◽  
Hui-Cong Huang ◽  
...  

Abstract Background Enterocytozoon bieneusi, a microsporidian species, is a zoonotic pathogen found in both humans and animals. Here, we determined the prevalence, explored the different genotypes of E. bieneusi in wild rhesus macaques (Macaca mulatta) (Hainan Island of China), and assessed their zoonotic potential. Methods We collected 173 fecal specimens from wild rhesus macaques living in Nanwan Monkey Island, Hainan, China. Subsequently, we identified and genotyped E. bieneusi using nested PCR analysis amplification of the internal transcribed spacer region (ITS) of the rRNA gene. Lastly, a neighbor-joining tree was built based on gene sequences from the ITS region of E. bieneusi. Results Of the 173 specimens from wild rhesus macaques, 26 (15%) were infected with E. bieneusi. We identified six genotypes of E. bieneusi, of which five were known: PigEBITS7 (n = 20), D (n = 2), Type IV (n = 1), Peru6 (n = 1), Henan-III (n = 1), and a novel genotype: HNM-IX (n = 1). From the phylogenetic analysis, the six genotypes identified here were all clustered into zoonotic group 1. Conclusion This study is the first report to detect E. bieneusi infection in wild rhesus macaques from Hainan, China. Human-pathogenic genotypes D, Henan-III, Peru6, PigEbITS7, and Type IV in the wild rhesus macaques support these animals infected with E. bieneusi have a public health significance.


2021 ◽  
Author(s):  
Richard M Mariita ◽  
Sebastien A Blumenstein ◽  
Christian M Beckert ◽  
Thomas Gombas ◽  
Rajul V Randive

Background: The purgaty One systems (cap+bottle) are portable stainless-steel water bottles with ultraviolet subtype C (UVC) disinfection capability. This study examines the bottle design, verifies disinfection performance against Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae and heterotrophic contaminants and addresses the public health relevance of heterotrophic bacteria. Methods: Bottles were inoculated with bacterial strains and disinfection efficacy examined using colony forming unit (CFU) assay. The heterotrophic plate count (HPC) method was used to determine the disinfection performance against environmental contaminants at day 0 and after 3 days of water stagnation. All UVC irradiation experiments were performed under stagnant conditions to confirm that the preset application cycle of 55 seconds offers the desired disinfection performance under worst-case condition. To determine the effectiveness of purgaty One systems (cap+bottle) in disinfection, inactivation efficacy or log reduction value (LRV) was determined using bacteria concentration between UVC ON condition and controls (UVC OFF). The study utilized the 16S rRNA gene for isolate characterization by identifying HPC bacteria to confirm if they belong to groups that are of public health concern. Results: Purgaty One systems fitted with Klaran UVC LEDs achieved 99.99% inactivation (LRV4) efficacy against E. coli and 99.9% inactivation (LRV3) against P. aeruginosa, V. cholerae and heterotrophic contaminants. Based on the 16S rRNA gene analyses, the study determined that the identified HPC isolates enriched by UVC irradiation are of rare public health concern. Conclusion: The bottles satisfactorily inactivated the target pathogenic bacteria and HPC contaminants even after 3 days of water stagnation.


2013 ◽  
Vol 80 (3) ◽  
pp. 841-848 ◽  
Author(s):  
Troy Skwor ◽  
Jasmine Shinko ◽  
Alexander Augustyniak ◽  
Christopher Gee ◽  
Greg Andraso

ABSTRACTMembers of the genusAeromonasare ubiquitous in nature and have increasingly been implicated in numerous diseases of humans and other animal taxa. Although some species of aeromonads are human pathogens, their presence, density, and relative abundance are rarely considered in assessing water quality. The objectives of this study were to identifyAeromonasspecies within Lake Erie, determine their antibiotic resistance patterns, and assess their potential pathogenicity.Aeromonasstrains were isolated from Lake Erie water by use ofAeromonasselective agar with and without tetracycline and ciprofloxacin. All isolates were analyzed for hemolytic ability and cytotoxicity against human epithelial cells and were identified to the species level by using 16S rRNA gene restriction fragment length polymorphisms and phylogenetic analysis based ongyrBgene sequences. A molecular virulence profile was identified for each isolate, using multiplex PCR analysis of six virulence genes. We demonstrated thatAeromonascomprised 16% of all culturable bacteria from Lake Erie. Among 119Aeromonasisolates, six species were identified, though only two species (Aeromonas hydrophilaandA. veronii) predominated among tetracycline- and ciprofloxacin-resistant isolates. Additionally, both of these species demonstrated pathogenic phenotypesin vitro. Virulence gene profiles demonstrated a high prevalence of aerolysin and serine protease genes amongA. hydrophilaandA. veroniiisolates, a genetic profile which corresponded with pathogenic phenotypes. Together, our findings demonstrate increased antibiotic resistance among potentially pathogenic strains of aeromonads, illustrating an emerging potential health concern.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1424
Author(s):  
Ji-Young Kwon ◽  
Ji-Ye Seo ◽  
Tae-Yun Kim ◽  
Hee-Il Lee ◽  
Jung-Won Ju

Encephalitozoon intestinalis and Enterocytozoon bieneusi can cause diarrhea in humans, especially severe diarrhea in immunocompromised patients. However, there have been few studies on Enc. intestinalis and Ent. bieneusi in patients with acute diarrhea in the Republic of Korea (ROK). In this study, fecal samples were collected from 1241 patients with acute diarrhea in 2020. Among these, 24 cases of Enc. intestinalis and one case of Ent. bieneusi were detected via PCR amplification of small subunit ribosomal RNA. Genotyping of the internal transcribed spacer region sequence revealed that the detected Ent. bieneusi genotype was in Group 1. This study provides the first evidence that Ent. bieneusi exists in humans in addition to animals in the ROK. To identify the causative agent, continuous monitoring of Enc. intestinalis and Ent. bieneusi is necessary for patients with acute diarrhea in the ROK.


2021 ◽  
Vol 12 ◽  
Author(s):  
Richard M. Mariita ◽  
Sébastien A. Blumenstein ◽  
Christian M. Beckert ◽  
Thomas Gombas ◽  
Rajul V. Randive

The purgaty One systems (cap+bottle) are portable stainless-steel water bottles with UV subtype C (UVC) disinfection capability. This study examines the bottle design, verifies disinfection performance against Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae, and heterotrophic contaminants, and addresses the public health relevance of heterotrophic bacteria. Bottles were inoculated with deliberately contaminated potable water and disinfection efficacy examined using colony forming unit (CFU) assay for each bacterial strain. The heterotrophic plate count (HPC) method was used to determine the disinfection performance against environmental contaminants at day 0 and after 3days of water in stationary condition without prior UVC exposure. All UVC irradiation experiments were performed under stationary conditions to confirm that the preset application cycle of 55s offers the desired disinfection performance under-tested conditions. To determine effectiveness of purgaty One systems (cap+bottle) in disinfection, inactivation efficacy or log reduction value (LRV) was determined using bacteria concentration between UVC ON condition and controls (UVC OFF). The study utilized the 16S ribosomal RNA (rRNA) gene for characterization of isolates by identifying HPC bacteria to confirm if they belong to groups that are of public health concern. Purgaty One systems fitted with Klaran UVC LEDs achieved 99.99% inactivation (LRV4) efficacy against E. coli and 99.9% inactivation (LRV3) against P. aeruginosa, V. cholerae, and heterotrophic contaminants. Based on the 16S rRNA gene analyses, the study determined that the identified HPC isolates from UVC irradiated water are of rare public health concern. The bottles satisfactorily inactivated the target pathogenic bacteria and HPC contaminants even after 3days of water in stationary condition.


2001 ◽  
Vol 67 (1) ◽  
pp. 185-189 ◽  
Author(s):  
Bjarne Munk Hansen ◽  
Niels Bohse Hendriksen

ABSTRACT Many strains of Bacillus cereus cause gastrointestinal diseases, and the closely related insect pathogen B. thuringiensis has also been involved in outbreaks of diarrhea. The diarrheal types of diseases are attributed to enterotoxins. Two different enterotoxic protein complexes, hemolysin BL (HBL) and nonhemolytic enterotoxin (NHE), and an enterotoxic protein, enterotoxin T, have been characterized, and the genes have been sequenced. PCR primers for the detection of these genes were deduced and used to detect the genes in 22 B. cereus and 41 B. thuringiensis strains. At least one gene of each of the two protein complexes HBL and NHE was detected in all of the B. thuringiensis strains, while six B. cereus strains were devoid of all three HBL genes, three lacked at least two of the three NHE genes, and one lacked all three. Five different sets of primers were used for detection of the gene (bceT) encoding enterotoxin T. The results obtained with these primer sets indicate that bceT is widely distributed among B. cereusand B. thuringiensis strains and that the gene varies in sequence among different strains. PCR with the two primer sets BCET1-BCET3 and BCET1-BCET4 unambiguously detected the bceTgene, as confirmed by Southern analysis. The occurrence of the genes within the two complexes is significantly associated, while neither the occurrence of the two complexes nor the occurrence of thebceT gene is significantly associated in the 63 strains. We suggest an approach for detection of enterotoxin-encoding genes inB. cereus and B. thuringiensis based on PCR analysis with the six primer sets for the detection of genes in the HBL and NHE operons and with the BCET1, BCET3, and BCET4 primers for the detection of bceT. PCR analysis of the 16S-23S rRNA gene internal transcribed spacer region revealed identical patterns for all strains studied.


2017 ◽  
Vol 08 ◽  
Author(s):  
Dong-Mei Yue ◽  
Jian-Gang Ma ◽  
Fa-Cai Li ◽  
Jun-Ling Hou ◽  
Wen-Bin Zheng ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Zhao ◽  
Guang-Xu Ren ◽  
Yu Qiang ◽  
Jiaqi Li ◽  
Jinkang Pu ◽  
...  

Enterocytozoon bieneusi is a microsporidian and zoonotic species. This study investigated the prevalence and distribution of E. bieneusi genotypes in farmed masked palm civets using nested PCR, as well as assessed their zoonotic potential by phylogenetic analysis of the ITS region of the rRNA region. Here, we collected 251 fecal specimens from farmed masked palm civets (Paguma larvata) from the Hainan Island, China. In total, 128 of 251 samples were positive for E. bieneusi, with an average infection rate of 51.0%. Seventeen genotypes were identified including 12 known genotypes—HNR-VI (n = 56), SHR1 (n = 45), SHW7 (n = 6), KIN-1 (n = 3), D (n = 3), New1 (n = 3), EbpC (n = 2), CHC5 (n = 1), CHG19 (n = 1), CHN4 (n = 1), EbpA (n = 1), and Henan-III (n = 1)—and five novel genotypes (HNPL-I to HNPL-II; one each). Phylogenetic analysis categorized these genotypes into two groups. Thirteen of them were members of the zoonotic group 1, and the remaining four genotypes were in group 12. This study has shown that the infection rates of E. bieneusi in masked palm civets from Hainan were relatively high and provide baseline data to control and prevent microsporidiosis in farm-related communities. Therefore, infections in masked palm civets with zoonotic genotypes D, EbpC, CHN4, EbpA, KIN-1, and Henan-III should be considered potential threats to public health.


Sign in / Sign up

Export Citation Format

Share Document