scholarly journals Aeromonas hydrophila and Aeromonas veronii Predominate among Potentially Pathogenic Ciprofloxacin- and Tetracycline-Resistant Aeromonas Isolates from Lake Erie

2013 ◽  
Vol 80 (3) ◽  
pp. 841-848 ◽  
Author(s):  
Troy Skwor ◽  
Jasmine Shinko ◽  
Alexander Augustyniak ◽  
Christopher Gee ◽  
Greg Andraso

ABSTRACTMembers of the genusAeromonasare ubiquitous in nature and have increasingly been implicated in numerous diseases of humans and other animal taxa. Although some species of aeromonads are human pathogens, their presence, density, and relative abundance are rarely considered in assessing water quality. The objectives of this study were to identifyAeromonasspecies within Lake Erie, determine their antibiotic resistance patterns, and assess their potential pathogenicity.Aeromonasstrains were isolated from Lake Erie water by use ofAeromonasselective agar with and without tetracycline and ciprofloxacin. All isolates were analyzed for hemolytic ability and cytotoxicity against human epithelial cells and were identified to the species level by using 16S rRNA gene restriction fragment length polymorphisms and phylogenetic analysis based ongyrBgene sequences. A molecular virulence profile was identified for each isolate, using multiplex PCR analysis of six virulence genes. We demonstrated thatAeromonascomprised 16% of all culturable bacteria from Lake Erie. Among 119Aeromonasisolates, six species were identified, though only two species (Aeromonas hydrophilaandA. veronii) predominated among tetracycline- and ciprofloxacin-resistant isolates. Additionally, both of these species demonstrated pathogenic phenotypesin vitro. Virulence gene profiles demonstrated a high prevalence of aerolysin and serine protease genes amongA. hydrophilaandA. veroniiisolates, a genetic profile which corresponded with pathogenic phenotypes. Together, our findings demonstrate increased antibiotic resistance among potentially pathogenic strains of aeromonads, illustrating an emerging potential health concern.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254836
Author(s):  
Yi Wang ◽  
Pramod K. Pandey ◽  
Sundaram Kuppu ◽  
Richard Pereira ◽  
Sharif Aly ◽  
...  

Antibiotic resistance genes (ARGs) are emerging contaminants causing serious global health concern. Interventions to address this concern include improving our understanding of methods for treating waste material of human and animal origin that are known to harbor ARGs. Anaerobic digestion is a commonly used process for treating dairy manure, and although effective in reducing ARGs, its mechanism of action is not clear. In this study, we used three ARGs to conducted a longitudinal bench scale anaerobic digestion experiment with various temperatures (28, 36, 44, and 52°C) in triplicate using fresh dairy manure for 30 days to evaluate the reduction of gene abundance. Three ARGs and two mobile genetic elements (MGEs) were studied: sulfonamide resistance gene (sulII), tetracycline resistance genes (tetW), macrolide-lincosamide-streptogramin B (MLSB) superfamily resistance genes (ermF), class 1 integrase gene (intI1), and transposase gene (tnpA). Genes were quantified by real-time quantitative PCR. Results show that the thermophilic anaerobic digestion (52°C) significantly reduced (p < 0.05) the absolute abundance of sulII (95%), intI1 (95%), tnpA (77%) and 16S rRNA gene (76%) after 30 days of digestion. A modified Collins–Selleck model was used to fit the decay curve, and results suggest that the gene reduction during the startup phase of anaerobic digestion (first 5 days) was faster than the later stage, and reductions in the first five days were more than 50% for most genes.


2015 ◽  
Vol 59 (9) ◽  
pp. 5171-5180 ◽  
Author(s):  
M. A. Fleury ◽  
G. Mourand ◽  
E. Jouy ◽  
F. Touzain ◽  
L. Le Devendec ◽  
...  

ABSTRACTResistance to extended-spectrum cephalosporins (ESCs) is an important health concern. Here, we studied the impact of the administration of a long-acting form of ceftiofur on the pig gut microbiota and ESC resistance inEscherichia coli. Pigs were orally inoculated with an ESC-resistantE. coliM63 strain harboring a conjugative plasmid carrying a gene conferring resistance,blaCTX-M-1. On the same day, they were given or not a unique injection of ceftiofur. Fecal microbiota were studied using quantitative PCR analysis of the main bacterial groups and quantification of short-chain fatty acids.E. coliand ESC-resistantE. coliwere determined by culture methods, and the ESC-resistantE. coliisolates were characterized. The copies of theblaCTX-M-1gene were quantified. After ceftiofur injection, the main change in gut microbiota was the significant but transitory decrease in theE. colipopulation. Acetate and butyrate levels were significantly lower in the treated group. In all inoculated groups,E. coliM63 persisted in most pigs, and theblaCTX-M-1gene was transferred to otherE. coli. Culture and PCR results showed that the ceftiofur-treated group shed significantly more resistant strains 1 and 3 days after ESC injection. Thereafter, on most dates, there were no differences between the groups, but notably, one pig in the nontreated group regularly excreted very high numbers of ESC-resistantE. coli, probably leading to a higher contamination level in its pen. In conclusion, the use of ESCs, and also the presence of high-shedding animals, are important features in the spread of ESC resistance.


2011 ◽  
Vol 77 (16) ◽  
pp. 5770-5781 ◽  
Author(s):  
Yanhong Chen ◽  
Gregory B. Penner ◽  
Meiju Li ◽  
Masahito Oba ◽  
Le Luo Guan

ABSTRACTOur understanding of the ruminal epithelial tissue-associated bacterial (defined as epimural bacteria in this study) community is limited. In this study, we aimed to determine whether diet influences the diversity of the epimural bacterial community in the bovine rumen. Twenty-four beef heifers were randomly assigned to either a rapid grain adaptation (RGA) treatment (n= 18) in which the heifers were allowed to adapt from a diet containing 97% hay to a diet containing 8% hay over 29 days or to the control group (n= 6), which was fed 97% hay. Rumen papillae were collected when the heifers were fed 97%, 25%, and 8% hay diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR analysis were used to characterize rumen epimural bacterial diversity and to estimate the total epimural bacterial population (copy numbers of the 16S rRNA gene). The epimural bacterial diversity from RGA heifers changed (P= 0.01) in response to the rapid dietary transition, whereas it was not affected in control heifers. A total of 88 PCR-DGGE bands were detected, and 44 were identified from phyla includingFirmicutes,Bacteroidetes, andProteobacteria. The bacteriaTreponemasp.,Ruminobactersp., andLachnospiraceaesp. were detected only when heifers were fed 25% and 8% hay diets, suggesting the presence of these bacteria is the result of adaptation to the high-grain diets. In addition, the total estimated population of rumen epimural bacteria was positively correlated with molar proportions of acetate, isobutyrate, and isovalerate, suggesting that they may play a role in volatile fatty acid metabolism in the rumen.


2012 ◽  
Vol 56 (10) ◽  
pp. 5061-5069 ◽  
Author(s):  
Peter Spanogiannopoulos ◽  
Maulik Thaker ◽  
Kalinka Koteva ◽  
Nicholas Waglechner ◽  
Gerard D. Wright

ABSTRACTIdentifying and understanding the collection of all antibiotic resistance determinants presented in the global microbiota, the antibiotic resistome, provides insight into the evolution of antibiotic resistance and critical information for the development of future antimicrobials. The rifamycins are broad-spectrum antibiotics that target bacterial transcription by inhibition of RNA polymerase. Although mutational alteration of the drug target is the predominant mechanism of resistance to this family of antibiotics in the clinic, a number of diverse inactivation mechanisms have also been reported. In this report, we investigate a subset of environmental rifampin-resistant actinomycete isolates and identify a diverse collection of rifampin inactivation mechanisms. We describe a single isolate, WAC1438, capable of inactivating rifampin by glycosylation. A draft genome sequence of WAC1438 (most closely related toStreptomyces speibonae, according to a 16S rRNA gene comparison) was assembled, and the associated rifampin glycosyltransferase open reading frame,rgt1438, was identified. The role ofrgt1438in rifampin resistance was confirmed by its disruption in the bacterial chromosome, resulting in a loss of antibiotic inactivation and a 4-fold decrease in MIC. Interestingly, examination of the RNA polymerase β-subunit sequence of WAC1438 suggests that it harbors a resistant target and thus possesses dual mechanisms of rifamycin resistance. Using anin vitroassay with purified enzyme, Rgt1438 could inactivate a variety of rifamycin antibiotics with comparable steady-state kinetics constants. Our results identifyrgt1438as a rifampin resistance determinant from WAC1438 capable of inactivating an assortment of rifamycins, adding a new element to the rifampin resistome.


2016 ◽  
Vol 82 (23) ◽  
pp. 6870-6880 ◽  
Author(s):  
Rosa Guarcello ◽  
Maria De Angelis ◽  
Luca Settanni ◽  
Sabino Formiglio ◽  
Raimondo Gaglio ◽  
...  

ABSTRACTAccumulation of biogenic amines (BAs) in cheese and other foods is a matter of public health concern. The aim of this study was to identify the enzyme activities responsible for BA degradation in lactic acid bacteria which were previously isolated from traditional Sicilian and Apulian cheeses. The selected strains would control the concentration of BAs during cheese manufacture. First, 431 isolates not showing genes encoding the decarboxylases responsible for BA formation were selected using PCR-based methods. Ninety-four out of the 431 isolates degraded BAs (2-phenylethylamine, cadaverine, histamine, putrescine, spermine, spermidine, tyramine, or tryptamine) during cultivation on chemically defined medium. As shown by random amplification of polymorphic DNA-PCR and partial sequencing of the 16S rRNA gene, 78 of the 94 strains wereLactobacillusspecies (Lactobacillus casei,Lb. fermentum,Lb. parabuchneri,Lb. paracasei,Lb. paraplantarum, andLb. rhamnosus),Leuconostocspecies (Leuconostoc lactisandLn. mesenteroides),Pediococcus pentosaceus,Lactococcus lactis,Streptococcusspecies (StreptococcusgallolyticusandS. thermophilus),Enterococcus lactis, andWeissella paramesenteroides. A multicopper oxidase-hydrolyzing BA was purified from the most active strain,Lb. paracaseisubsp.paracaseiCB9CT. The gene encoding the multicopper oxidase was sequenced and was also detected in other amine-degrading strains ofLb. fermentum,Lb. paraplantarum, andP. pentosaceus.Lb. paracaseisubsp.paracaseiCB9CT and another strain (CACIO6CT) of the same species that was able to degrade all the BAs were singly used as adjunct starters for decreasing the concentration of histamine and tyramine in industrial Caciocavallo cheese. The results of this study disclose a feasible strategy for increasing the safety of traditional cheeses while maintaining their typical sensorial traits.IMPORTANCEBecause high concentrations of the potentially toxic biogenic amines may be found in traditional/typical cheeses, the safety of these food items should be improved. Lactic acid bacteria selected for the ability to degrade biogenic amines may be used during cheese making to control the concentrations of biogenic amines.


2011 ◽  
Vol 78 (2) ◽  
pp. 511-518 ◽  
Author(s):  
Yohei Watanabe ◽  
Fumiko Nagai ◽  
Masami Morotomi

ABSTRACTIsolation, cultivation, and characterization of the intestinal microorganisms are important for understanding the comprehensive physiology of the human gastrointestinal (GI) tract microbiota. Here, we isolated two novel bacterial strains, YIT 12067Tand YIT 12068, from the feces of healthy human adults. Phylogenetic analysis indicated that they belonged to the same species and were most closely related toPhascolarctobacterium faeciumACM 3679T, with 91.4% to 91.5% 16S rRNA gene sequence similarities, respectively. Substrate availability tests revealed that the isolates used only succinate; they did not ferment any other short-chain fatty acids or carbohydrates tested. When these strains were cocultured with the xylan-utilizing and succinate-producing bacteriumParaprevotella xylaniphilaYIT 11841T, in medium supplemented with xylan but not succinate, their cell numbers became 2 to 3 orders of magnitude higher than those of the monoculture; succinate became undetectable, and propionate was formed. Database analysis revealed that over 200 uncultured bacterial clones from the feces of humans and other mammals showed high sequence identity (>98.7%) to YIT 12067T. Real-time PCR analysis also revealed that YIT 12067T-like bacteria were present in 21% of human fecal samples, at an average level of 3.34 × 108cells/g feces. These results indicate that YIT 12067T-like bacteria are distributed broadly in the GI tract as subdominant members that may adapt to the intestinal environment by specializing to utilize the succinate generated by other bacterial species. The phylogenetic and physiological properties of YIT 12067Tand YIT 12068 suggest that these strains represent a novel species, which we have designatedPhascolarctobacterium succinatutenssp. nov.


2012 ◽  
Vol 78 (16) ◽  
pp. 5511-5519 ◽  
Author(s):  
Cheonghoon Lee ◽  
Senyo Agidi ◽  
Jason W. Marion ◽  
Jiyoung Lee

ABSTRACTThe genusArcobacterhas been associated with human illness and fecal contamination by humans and animals. To better characterize the health risk posed by this emerging waterborne pathogen, we investigated the occurrence ofArcobacterspp. in Lake Erie beach waters. During the summer of 2010, water samples were collected 35 times from the Euclid, Villa Angela, and Headlands (East and West) beaches, located along Ohio's Lake Erie coast. After sample concentration,Arcobacterwas quantified by real-time PCR targeting theArcobacter23S rRNA gene. Other fecal genetic markers (Bacteroides16S rRNA gene [HuBac],Escherichia coli uidAgene,Enterococcus23S rRNA gene, and tetracycline resistance genes) were also assessed.Arcobacterwas detected frequently at all beaches, and both the occurrence and densities ofArcobacterspp. were higher at the Euclid and Villa Angela beaches (with higher levels of fecal contamination) than at the East and West Headlands beaches. TheArcobacterdensity in Lake Erie beach water was significantly correlated with the human-specific fecal marker HuBac according to Spearman's correlation analysis (r= 0.592;P< 0.001). Phylogenetic analysis demonstrated that most of the identifiedArcobactersequences were closely related toArcobacter cryaerophilus, which is known to cause gastrointestinal diseases in humans. Since human-pathogenicArcobacterspp. are linked to human-associated fecal sources, it is important to identify and manage the human-associated contamination sources for the prevention ofArcobacter-associated public health risks at Lake Erie beaches.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Wei Zhao ◽  
Huan-Huan Zhou ◽  
Guang-Xu Ren ◽  
Yu Qiang ◽  
Hui-Cong Huang ◽  
...  

Abstract Background Enterocytozoon bieneusi, a microsporidian species, is a zoonotic pathogen found in both humans and animals. Here, we determined the prevalence, explored the different genotypes of E. bieneusi in wild rhesus macaques (Macaca mulatta) (Hainan Island of China), and assessed their zoonotic potential. Methods We collected 173 fecal specimens from wild rhesus macaques living in Nanwan Monkey Island, Hainan, China. Subsequently, we identified and genotyped E. bieneusi using nested PCR analysis amplification of the internal transcribed spacer region (ITS) of the rRNA gene. Lastly, a neighbor-joining tree was built based on gene sequences from the ITS region of E. bieneusi. Results Of the 173 specimens from wild rhesus macaques, 26 (15%) were infected with E. bieneusi. We identified six genotypes of E. bieneusi, of which five were known: PigEBITS7 (n = 20), D (n = 2), Type IV (n = 1), Peru6 (n = 1), Henan-III (n = 1), and a novel genotype: HNM-IX (n = 1). From the phylogenetic analysis, the six genotypes identified here were all clustered into zoonotic group 1. Conclusion This study is the first report to detect E. bieneusi infection in wild rhesus macaques from Hainan, China. Human-pathogenic genotypes D, Henan-III, Peru6, PigEbITS7, and Type IV in the wild rhesus macaques support these animals infected with E. bieneusi have a public health significance.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 654
Author(s):  
Hanan A. Zaher ◽  
Mohamad I. Nofal ◽  
Basma M. Hendam ◽  
Moustafa M. Elshaer ◽  
Abdulaziz S. Alothaim ◽  
...  

Vibrio parahaemolyticus and Aeromonas hydrophila are major public health problems and the main cause of bacterial disease in Nile tilapia (Oreochromis niloticus). This study was conducted to determine the prevalence, antibiotic resistance and some virulence genes of both V. parahaemolyticus and A. hydrophila isolates from Nile tilapia. From Manzala Farm at Dakahlia governorate, 250 freshwater fish samples were collected. The confirmed bacterial isolates from the examined Nile tilapia samples in the study were 24.8% (62/250) for V. parahaemolyticus and 19.2% (48/250) for A. hydrophila. multiplex PCR, revealing that the tlh gene was found in 46.7% (29/62) of V. parahaemolyticus isolates, while the tdh and trh virulence genes were found in 17.2% (5/29). Meanwhile, 39.5% (19/48) of A. hydrophila isolates had the 16s rRNA gene and 10.5% (2/19) had the aerA and ahh1 virulence genes. The Multiple Antibiotic Resistance indices of V. parahaemolyticus and A. hydrophila were 0.587 and 0.586, respectively. In conclusion, alternative non-antibiotic control strategies for bacterial infections in farmed fish should be promoted to avoid multidrug-resistant bacteria. Therefore, it is suggested that farmers should be skilled in basic fish health control and that molecular detection methods are more rapid and cost-effective than bacteriological methods.


2021 ◽  
Author(s):  
Wei Zhao ◽  
Huan-Huan Zhou ◽  
Guang-Xu Ren ◽  
Yu Qiang ◽  
Hui-Cong Huang ◽  
...  

Abstract Background Enterocytozoon bieneusi, a microsporidian species, is a zoonotic pathogen found in both humans and animals. Here, we determined the prevalence, explored the different genotypes of E. bieneusi in wild rhesus macaques (Macaca mulatta) (Hainan Island of China), and assessed their zoonotic potential. Methods We collected 173 fecal specimens from wild M. mulatta living in Nanwan Monkey Island, Hainan, China. Subsequently, we identified and genotyped E. bieneusi using nested PCR analysis amplification of the internal transcribed spacer region (ITS) of the rRNA gene. Lastly, a neighbor-joining tree was built based on gene sequences from the ITS region of E. bieneusi. Results Of the 173 specimens from wild M. mulatta, 26 (15%) were infected with E. bieneusi. We identified six genotypes of E. bieneusi, of which five were known: PigEBITS7 (n = 20), D (n = 2), Type IV (n = 1), Peru6 (n = 1), Henan-III (n = 1), and a novel genotype: HNM-IX (n = 1). From the phylogenetic analysis, the six genotypes identified here were all categorized into zoonotic group 1. Conclusion Based on the results taht the novel genotype falling under zoonotic group 1 and all the known genotypes found in humans, we conclude that the wild M. mulatta infected with E. bieneusi have a public health significance.


Sign in / Sign up

Export Citation Format

Share Document