novel genotype
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 35)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Susanna Kar Pui Lau ◽  
Kenneth Sze Ming Li ◽  
Xin Li ◽  
Ka-Yan Tsang ◽  
Siddharth Sridhar ◽  
...  

Since its first discovery in 1967, human coronavirus OC43 (HCoV-OC43) has been associated with mild self-limiting upper respiratory infections worldwide. Fatal primary pneumonia due to HCoV-OC43 is not frequently described. This study describes a case of fatal primary pneumonia associated with HCoV-OC43 in a 75-year-old patient with good past health. The viral loads of the respiratory tract specimens (bronchoalveolar lavage and endotracheal aspirate) from diagnosis to death were persistently high (3.49 × 106–1.10 × 1010 copies/ml). HCoV-OC43 at a 6.46 × 103 copies/ml level was also detected from his pleural fluid 2 days before his death. Complete genome sequencing and phylogenetic analysis showed that the present HCoV-OC43 forms a distinct cluster with three other HCoV-OC43 from United States, with a bootstrap value of 100% and sharing 99.9% nucleotide identities. Pairwise genetic distance between this cluster and other HCoV-OC43 genotypes ranged from 0.27 ± 0.02% to 1.25 ± 0.01%. In contrast, the lowest pairwise genetic distance between existing HCoV-OC43 genotypes was 0.26 ± 0.02%, suggesting that this cluster constitutes a novel HCoV-OC43 genotype, which we named genotype I. Unlike genotypes D, E, F, G, and H, no recombination event was observed for this novel genotype. Structural modeling revealed that the loop with the S1/S2 cleavage site was four amino acids longer than other HCoV-OC43, making it more exposed and accessible to protease, which may have resulted in its possible hypervirulence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaturong Putaporntip ◽  
Napaporn Kuamsab ◽  
Warisa Nuprasert ◽  
Rattanaporn Rojrung ◽  
Urassaya Pattanawong ◽  
...  

AbstractA survey of Acanthamoeba in 100 public freshwater sources in 28 provinces across Thailand has identified 9 genotypes comprising T2/6, T3-T5, T9, T11, T12, T18 and a novel ‘T23’ among 131 isolates. Sequencing of the near complete 18S rRNA gene of Acanthamoeba of all isolates has shown that the most predominant genotype T4 found in 87 isolates (66.4%) contained 4 subtypes, i.e. T4A, T4B, T4C and T4F, while all isolates assigned to genotype T2/6 belonged to subtype B. Among intron-bearing genotypes, most isolates harbouring genotype T3 contained S516 introns, characterised by 3 distinct variants whilst all genotypes T4A and T5 were intronless. Identical 18S rRNA sequences of Acanthamoeba were identified across regions of the country and four isolates in this study shared the same sequences with those from remote nations, suggesting that some strains have reproductive success in diverse ecological niche. Nucleotide diversity of genotypes T2/6B, T3, T4, T9 and T11 in this study was significantly less than that among global isolates outside Thailand, implying that limited sequence diversity occurred within local populations. A remarkably higher level of nucleotide diversity in genotype T11 than those of other genotypes (0.041 vs. 0.012–0.024) could be due to cryptic subtypes. Recombination breakpoints have been detected within genotypes and subtypes as well as within isolates despite no evidence for sexual and parasexual cycles in the genus Acanthamoeba. Tajima’s D, Fu & Li’s D* and F* statistics revealed significantly negative deviation from neutrality across genotypes and subtypes, implying purifying selection in this locus. The 18S rRNA gene of the novel genotype ‘T23’ displayed 7.82% to 28.44% sequence differences in comparison with all known genotypes. Both Bayesian and maximum likelihood phylogenetic trees have placed genotype T23 as sister to the clade comprising genotypes T10, T12 and T14, all of these possess cyst structure belonging to morphological group III. Hence, Acanthamoeba bangkokensis sp. nov. is proposed for this novel genotype. It is likely that more genotypes of Acanthamoeba remain to be discovered while the evolution of the 18S rRNA gene of this pathogenic-free living amoeba seems to be ongoing.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1017
Author(s):  
Hirohisa Mekata ◽  
Tomohiro Okagawa ◽  
Satoru Konnai ◽  
Takayuki Miyazawa

Bovine foamy virus (BFV) is a member of the foamy virus family in cattle. Information on the epidemiology, transmission routes, and whole-genome sequences of BFV is still limited. To understand the characteristics of BFV, this study included a molecular survey in Japan and the determination of the whole-genome sequences of 30 BFV isolates. A total of 30 (3.4%, 30/884) cattle were infected with BFV according to PCR analysis. Cattle less than 48 months old were scarcely infected with this virus, and older animals had a significantly higher rate of infection. To reveal the possibility of vertical transmission, we additionally surveyed 77 pairs of dams and 3-month-old calves in a farm already confirmed to have BFV. We confirmed that one of the calves born from a dam with BFV was infected. Phylogenetic analyses revealed that a novel genotype was spread in Japan. In conclusion, the prevalence of BFV in Japan is relatively low and three genotypes, including a novel genotype, are spread in Japan.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soo Tein Ngoi ◽  
Wen Kiong Niek ◽  
Yee Wan Lee ◽  
Sazaly AbuBakar ◽  
Cindy Shuan Ju Teh

AbstractStaphylococcus aureus (S. aureus) is an opportunistic pathogen capable of causing serious health implications in susceptible individuals once it invades the host’s protective barriers. Methicillin-susceptible S. aureus (MSSA) often receives lesser attention although it has been frequently associated with serious infections in human. We aim to investigate the genomic features of a highly virulent yet pan susceptible MSSA strain (coded as HS-MSSA) which caused concurrent bacteraemia in a dengue patient, ultimately resulted in sepsis death of the patient. Whole genome sequence analysis was performed. The draft genome of HS-MSSA is approximately 2.78 Mb (GC content = 32.7%) comprising of 2637 predicted coding sequences. In silico genotyping of the HS-MSSA strain revealed a novel combined genotype (t091/ST2990). The HS-MSSA carries a SaPIn1-like pathogenicity island that harbours the staphylococcal enterotoxin and enterotoxin-like genes (sec3 and selL). The strain-specific β-lactamase (blaZ)-bearing plasmid region was identified in HS-MSSA. Core genome phylogeny showed that the HS-MSSA strain shared a common ancestry with the European MRSA clone. We report herein the genomic features of an MSSA lineage with novel genotype previously not reported elsewhere.


2021 ◽  
Author(s):  
Wei Zhao ◽  
Huan-Huan Zhou ◽  
Guang-Xu Ren ◽  
Yu Qiang ◽  
Hui-Cong Huang ◽  
...  

Abstract Background Enterocytozoon bieneusi, a microsporidian species, is a zoonotic pathogen found in both humans and animals. Here, we determined the prevalence, explored the different genotypes of E. bieneusi in wild rhesus macaques (Macaca mulatta) (Hainan Island of China), and assessed their zoonotic potential. Methods We collected 173 fecal specimens from wild M. mulatta living in Nanwan Monkey Island, Hainan, China. Subsequently, we identified and genotyped E. bieneusi using nested PCR analysis amplification of the internal transcribed spacer region (ITS) of the rRNA gene. Lastly, a neighbor-joining tree was built based on gene sequences from the ITS region of E. bieneusi. Results Of the 173 specimens from wild M. mulatta, 26 (15%) were infected with E. bieneusi. We identified six genotypes of E. bieneusi, of which five were known: PigEBITS7 (n = 20), D (n = 2), Type IV (n = 1), Peru6 (n = 1), Henan-III (n = 1), and a novel genotype: HNM-IX (n = 1). From the phylogenetic analysis, the six genotypes identified here were all categorized into zoonotic group 1. Conclusion Based on the results taht the novel genotype falling under zoonotic group 1 and all the known genotypes found in humans, we conclude that the wild M. mulatta infected with E. bieneusi have a public health significance.


Author(s):  
Miwako Kasahara-Kamiie ◽  
Mitsuo Kagawa ◽  
Mai Shiokawa ◽  
Fujiko Sunaga ◽  
Yuka Fukase ◽  
...  

Atypical porcine pestivirus (APPV), which has been confirmed to be associated with congenital tremor (CT) in pigs, is a newly discovered porcine virus that has been found in the Americas, Europe, and Asia; however, no report of APPV in Japan has been published. We identified an APPV in the central nervous system of Japanese piglets with CT, and firstly determined and analyzed the complete genome sequence. Phylogenetic analysis using the complete genome nucleotide sequence of the Japanese APPV, named Anna/2020, and those of APPVs from the NCBI database showed that APPVs were divided into three genotypes (genotypes 1 to 3), and that Anna/2020 clustered with the genotype 3 APPV strains, but distantly branched from these strains. Pairwise complete coding region nucleotide sequence comparisons revealed that there was 94.0% to 99.7% sequence identity among the genotype 3 strains, while Anna/2020 showed 87.0% to 89.3% identity to those genotype 3 strains, suggesting that Anna/2020 represents a novel APPV lineage within genotype 3. Retrospective examinations using RT-PCR revealed one genotype 1 and two novel genotype 3 APPVs from pigs without CT, and that novel genotype 3 APPVs have been prevalent in Japan since at least 2007.


2020 ◽  
Vol 9 (47) ◽  
Author(s):  
Sven M. H. Berendsen ◽  
Willem E. W. Schravesande

ABSTRACT The complete genome sequence of a Pepper mild mottle virus (PMMoV) found on pepper seeds produced in Chile in 2019 was determined using Oxford Nanopore Technologies and Sanger sequencing. The low nucleotide sequence identities (between 89% and 91%) to known PMMoV isolates suggested that this isolate belongs to a novel genotype.


2020 ◽  
Vol 250 ◽  
pp. 108879 ◽  
Author(s):  
Nanako Yamashita-Kawanishi ◽  
Soma Ito ◽  
Dai Ishiyama ◽  
James K. Chambers ◽  
Kazuyuki Uchida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document