A Novel Lytic Phage SZW_AS01 of Human Gut Bacteria Alistipes Shahii

Author(s):  
Yanchen Li ◽  
Juntao Shen ◽  
Junyu Chen ◽  
Luofei Mo ◽  
Jieqiong Zhang ◽  
...  

Abstract Alisitipes phage SZW_AS01, a novel lytic phage that specifically infects Alistipes shahii, was isolated from wastewater samples in Shenzhen, China. The phage's genome consists of 45,392 bp, with a GC content of 47%. The genome encodes 56 putative open reading frames (ORFs) and 1 tRNA gene. Direct terminal repeats with a length of 55 bp are present at both ends of the genome. Phylogenetic analysis of the amino acid sequences of terminase large subunit shows that phage SZW_AS01 forms a distinct branch from the Siphoviridae family phages, but is far from the Podoviridae and Myoviridae family phages. Transmission electron microscopy confirmed that SZW_AS01 belongs to the Siphoviridae family. To the best of our knowledge, this is the first report of a lytic phage infecting bacteria in the Alistipes genus.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jian Zeng ◽  
Yan Wang ◽  
Ju Zhang ◽  
Shixing Yang ◽  
Wen Zhang

AbstractMembers of the family Inoviridae (inoviruses) are characterized by their unique filamentous morphology and infection cycle. The viral genome of inovirus is able to integrate into the host genome and continuously releases virions without lysing the host, establishing chronic infection. A large number of inoviruses have been obtained from microbial genomes and metagenomes recently, but putative novel inoviruses remaining to be identified. Here, using viral metagenomics, we identified four novel inoviruses from cloacal swab samples of wild and breeding birds. The circular genome of those four inoviruses are 6732 to 7709 nt in length with 51.4% to 56.5% GC content and encodes 9 to 13 open reading frames, respectively. The zonula occludens toxin gene implicated in the virulence of pathogenic host bacteria were identified in all four inoviruses and shared the highest amino acid sequences identity (< 37.3%) to other reference strains belonging to different genera of the family Inoviridae and among themselves. Phylogenetic analysis indicated that all the four inoviruses were genetically far away from other strains belonging to the family Inoviridae and formed an independent clade. According to the genetic distance-based criteria, all the four inoviruses identified in the present study respectively belong to four novel putative genera in the family Inoviridae.


2018 ◽  
Vol 64 (7) ◽  
pp. 483-491 ◽  
Author(s):  
Urmi Bajpai ◽  
Abhishek Kumar Mehta ◽  
Kandasamy Eniyan ◽  
Avni Sinha ◽  
Ankita Ray ◽  
...  

Bacteriophages are being considered as a promising natural resource for the development of alternative strategies against mycobacterial diseases, especially in the context of the wide-spread occurrence of drug resistance among the clinical isolates of Mycobacterium tuberculosis. However, there is not much information documented on mycobacteriophages from India. Here, we report the isolation of 17 mycobacteriophages using Mycobacterium smegmatis as the bacterial host, where 9 phages also lyse M. tuberculosis H37Rv. We present detailed analysis of one of these mycobacteriophages — PDRPv. Transmission electron microscopy and polymerase chain reaction analysis (of a conserved region within the TMP gene) show PDRPv to belong to the Siphoviridae family and B1 subcluster, respectively. The genome (69 110 bp) of PDRPv is circularly permuted double-stranded DNA with ∼66% GC content and has 106 open reading frames (ORFs). On the basis of sequence similarity and conserved domains, we have assigned function to 28 ORFs and have broadly categorized them into 6 groups that are related to replication and genome maintenance, DNA packaging, virion release, structural proteins, lysogeny-related genes and endolysins. The present study reports the occurrence of novel antimycobacterial phages in India and highlights their potential to contribute to our understanding of these phages and their gene products as potential antimicrobial agents.


Author(s):  
Haojie Ge ◽  
Yanping Xu ◽  
Kai Zhang ◽  
Shuxuan Zhang ◽  
Maozhi Hu ◽  
...  

Salmonellosis occurs frequently worldwide, causing serious threats to public health safety. The abuse of antibiotics is increasing the antibiotic resistance in bacteria, thereby making the prevention and control of Salmonella more difficult. A phage can help control the spread of bacteria. In this study, S55, a lytic phage, was isolated from faecal samples obtained from poultry farms using Salmonella Pullorum ( S . Pullorum) as the host bacterium. This phage belongs to Siphoviridae and has a polyhedral head and a retraction-free tail. S55 showed a strong ability to lyse Salmonella serovars, such as S . Pullorum (58/60, 96.67%) and S . Enteritidis (97/104, 93.27%). One-step growth kinetics showed that the latent period was 10 min, burst period was 80 min and burst size was 40 pfu/cell. The optimal multiplicity of infection was 0.01, and the phage was able to survive at a pH of 4–11 and temperature of 40°C–60°C for 60 min. Complete genome sequence analysis revealed that the S55 genome length is 42,781 bp (GC content, 50.28%) and it contains 58 open reading frames (ORF), including 25 ORFs with known or assumed functions, without tRNA genes. Moreover, S55 does not carry genes that encode virulence or resistance factors. At different temperatures (4°C or 25°C), S55 was found to lower the populations of S . Pullorum and S . Enteritidis on chicken skin surface. Its bacteriostatic effect at 4°C was higher than that at 25°C. In conclusion, S55 can be considered a promising biological agent for the prevention and control of Salmonella .


2021 ◽  
Author(s):  
Yujie Jing ◽  
Hong Lin ◽  
Houqi Ning ◽  
Jingxue Wang

Abstract A novel lytic phage named vB_Af_QDWS595 against Alcaligenes faecalis was isolated and characterized in this study. The genome of phage vB_Af_QDWS595 was sequenced and analyzed, and the result revealed that the phage contained a 88,795 bp of circular double-stranded DNA with 41.12% of GC content. There were 74 putative open reading frames (ORFs) and 11 tRNAs predicted in genome of phage vB_Af_QDWS595. Phenotype and phylogeny analysis indicated that this phage might be a new member within the family Schitoviridae. Phage vB_Af_QDWS595 is the first sequenced phage against Alcaligenes faecalis to the best of our knowledge.


2021 ◽  
Vol 6 ◽  
pp. 27-35

Phage therapy is a promising alternative therapy for the treatment of E. coli infection. Although the total number of phages on the earth is as high as 10 31 , the reported phages and thoroughly studied are very limited. Therefore, the continuous discovery of new phages and in-depth research will provide materials for the wide application of phage therapy in the future. In this study, a novel E. coli phage vB_EcoM_011D4 was isolated from sewage samples, and the biological characteristics were studied. Electron microscopy and homology analysis results showed that vB_EcoM_011D4 belongs to the family Myoviridae. One-step growth curve showing the latent period of vB_EcoM_011D4 was 10 min, with the burst size of 115 PFU/cell. Additionally, Phage vB_EcoM_011D4 was highly stabled under different temperatures (range 4 – 70 ℃) and pH conditions (range 6 – 10). At the same time, its genome was subjected to high-throughput sequencing and compared with the reported phages. The results of high-throughput sequencing assembly showed that vB_EcoM_011D4 is a linear, double-stranded DNA virus containing 163764 bp, with an average GC content of 40.50%, and a total of 273 open reading frames (ORFs). Genomic comparison analysis revealed that most of the ORFs were similar to Enterobacteria phage Phi1 and RB49. However, ORF147 and ORF148 putative DNA methylase family protein is less than 67% homology with already published phages. In addition, the phylogenetic analysis of terminates large subunit showed that it belongs to a new branch and shows less than 50 similarities to reported phages. There is no lysogenic, toxin or antibiotic-resistant related gene was found in the genome of vB_EcoM_011D4. In summary, vB_EcoM_011D4 is a newly discovered phage, which can be further studied for elucidating the phage diversity and it is benefits for the wide application of phage therapy.


2010 ◽  
Vol 76 (6) ◽  
pp. 1955-1966 ◽  
Author(s):  
Z. Lu ◽  
E. Altermann ◽  
F. Breidt ◽  
S. Kozyavkin

ABSTRACT Vegetable fermentations rely on the proper succession of a variety of lactic acid bacteria (LAB). Leuconostoc mesenteroides initiates fermentation. As fermentation proceeds, L. mesenteroides dies off and other LAB complete the fermentation. Phages infecting L. mesenteroides may significantly influence the die-off of L. mesenteroides. However, no L. mesenteroides phages have been previously genetically characterized. Knowledge of more phage genome sequences may provide new insights into phage genomics, phage evolution, and phage-host interactions. We have determined the complete genome sequence of L. mesenteroides phage Φ1-A4, isolated from an industrial sauerkraut fermentation. The phage possesses a linear, double-stranded DNA genome consisting of 29,508 bp with a G+C content of 36%. Fifty open reading frames (ORFs) were predicted. Putative functions were assigned to 26 ORFs (52%), including 5 ORFs of structural proteins. The phage genome was modularly organized, containing DNA replication, DNA-packaging, head and tail morphogenesis, cell lysis, and DNA regulation/modification modules. In silico analyses showed that Φ1-A4 is a unique lytic phage with a large-scale genome inversion (∼30% of the genome). The genome inversion encompassed the lysis module, part of the structural protein module, and a cos site. The endolysin gene was flanked by two holin genes. The tail morphogenesis module was interspersed with cell lysis genes and other genes with unknown functions. The predicted amino acid sequences of the phage proteins showed little similarity to other phages, but functional analyses showed that Φ1-A4 clusters with several Lactococcus phages. To our knowledge, Φ1-A4 is the first genetically characterized L. mesenteroides phage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yundan Liu ◽  
Kaiyang Zheng ◽  
Baohong Liu ◽  
Yantao Liang ◽  
Siyuan You ◽  
...  

Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from −20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bingrui Sui ◽  
Lili Han ◽  
Huiying Ren ◽  
Wenhua Liu ◽  
Can Zhang

A novel virulent bacteriophage vB_EcoM_swi3 (swi3), isolated from swine feces, lyzed 9% (6/65) of Escherichia coli and isolates 54% (39/72) of Salmonella enteritidis isolates, which were all clinically pathogenic multidrug-resistant strains. Morphological observation showed that phage swi3 belonged to the Myoviridae family with an icosahedral head (80 nm in diameter) and a contractile sheathed tail (120 nm in length). At the optimal multiplicity of infection of 1, the one-step growth analysis of swi3 showed a 25-min latent period with a burst size of 25-plaque-forming units (PFU)/infected cell. Phage swi3 remained stable both at pH 6.0–8.0 and at less than 50°C for at least 1 h. Genomic sequencing and bioinformatics analysis based on genomic sequences and the terminase large subunit showed that phage swi3 was a novel member that was most closely related to Salmonella phages and belonged to the Rosemountvirus genus. Phage swi3 harbored a 52-kb double-stranded DNA genome with 46.02% GC content. Seventy-two potential open reading frames were identified and annotated, only 15 of which had been assigned to functional genes. No gene associated with pathogenicity and virulence was identified. The effects of phage swi3 in treating pathologic E. coli infections in vivo were evaluated using a mouse model. The administration of a single intraperitoneal injection of swi3 (106 PFU) at 2 h after challenge with the E. coli strain (serotype K88) (108 colony-forming units) sufficiently protected all mice without toxic side effects. This finding highlighted that phage swi3 might be used as an effective antibacterial agent to prevent E. coli and S. enteritidis infection.


2021 ◽  
Author(s):  
Bingdong Wei ◽  
Cong Cong ◽  
Yongping Xu ◽  
Lichun Zhang ◽  
Ling Zhen ◽  
...  

Abstract This work describes the characterization and genome annotation of a newly isolated lytic phage vB_SsoM_Z31 (referred to as Z31), isolated from wastewater samples collected in Dalian, China. Transmission electron microscope revealed that phage Z31 belongs to the family Myoviridae, order Caudovirales. This phage specifically infects the Shigella sonnei, Shigella dysenteriae and Escherichia coli. The genome of the phage Z31 is an 89,355 bp length dsDNA molecule with a G + C content of 38.87%. It has been predicted to contain 133 ORFs, and 24 tRNAs. No homologs of virulence factors or antimicrobial resistance genes were found in this phage. Based on the results of nucleotide sequence alignment and phylogenetic analysis, phage Z31 was assigned to the genus Felixounavirus, subfamily Ounavirnae.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Laura Kaliniene ◽  
Eugenijus Šimoliūnas ◽  
Lidija Truncaitė ◽  
Aurelija Zajančkauskaitė ◽  
Juozas Nainys ◽  
...  

ABSTRACTThis is the first report on a myophage that infectsArthrobacter. A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil usingArthrobactersp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the familyMyoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the familySiphoviridaethan it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only inArthrobacterphages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed thatArthrobactermyophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the orderCaudovirales.IMPORTANCEBacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families:Podoviridae(with short tails),Siphoviridae(with long noncontractile tails), andMyoviridae(with contractile tails). Based on the current hypothesis, myophages, which may have evolved from siphophages, are thought to have first emerged among Gram-negative bacteria, whereas they emerged only later among Gram-positive bacteria. The results of the molecular characterization of myophage vB_ArtM-ArV1 presented here conform to the aforementioned hypothesis, since, at a glance, bacteriophage vB_ArtM-ArV1 appears to be a siphovirus that possesses a seemingly functional contractile tail. Our work demonstrates that such “chimeric” myophages are of cosmopolitan nature and are likely characteristic of the ecologically important soil bacterial genusArthrobacter.


Sign in / Sign up

Export Citation Format

Share Document