scholarly journals Characterization and Genomic Analysis of Marinobacter Phage vB_MalS-PS3, Representing a New Lambda-Like Temperate Siphoviral Genus Infecting Algae-Associated Bacteria

2021 ◽  
Vol 12 ◽  
Author(s):  
Yundan Liu ◽  
Kaiyang Zheng ◽  
Baohong Liu ◽  
Yantao Liang ◽  
Siyuan You ◽  
...  

Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from −20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.

2009 ◽  
Vol 55 (5) ◽  
pp. 587-598 ◽  
Author(s):  
Hailang Luo ◽  
Li Shen ◽  
Huaqun Yin ◽  
Qian Li ◽  
Qijiong Chen ◽  
...  

Acidithiobacillus ferrooxidans is an important microorganism used in biomining operations for metal recovery. Whole-genomic diversity analysis based on the oligonucleotide microarray was used to analyze the gene content of 12 strains of A. ferrooxidans purified from various mining areas in China. Among the 3100 open reading frames (ORFs) on the slides, 1235 ORFs were absent in at least 1 strain of bacteria and 1385 ORFs were conserved in all strains. The hybridization results showed that these strains were highly diverse from a genomic perspective. The hybridization results of 4 major functional gene categories, namely electron transport, carbon metabolism, extracellular polysaccharides, and detoxification, were analyzed. Based on the hybridization signals obtained, a phylogenetic tree was built to analyze the evolution of the 12 tested strains, which indicated that the geographic distribution was the main factor influencing the strain diversity of these strains. Based on the hybridization signals of genes associated with bioleaching, another phylogenetic tree showed an evolutionary relationship from which the co-relation between the clustering of specific genes and geochemistry could be observed. The results revealed that the main factor was geochemistry, among which the following 6 factors were the most important: pH, Mg, Cu, S, Fe, and Al.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242362
Author(s):  
Xin Feng ◽  
Rui-lian Lai ◽  
Min-xia Gao ◽  
Wen-guang Chen ◽  
Ru-jian Wu ◽  
...  

Two distinct closterovirus-like genome sequences (termed AdV-1 v1 and v2) were identified in Actinidia chinensis var. deliciosa ‘Miliang-1’ that had no disease symptoms using high-throughput sequencing. Using overlapping reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends, the genomic sequences of AdV-1 v1 and v2 were confirmed as 17,646 and 18,578 nucleotides in length, respectively. The two complete genomes contained 9 and 15 open reading frames, respectively, coding for proteins having domains typical of Closteroviridae, such as RNA-dependent RNA polymerase (RdRp), heat shock protein 70 homolog (HSP70h) and coat protein (CP). Sequence analysis showed that the amino acid sequences of RdRp, HSP70h, and CP of the two variants exhibited high similarity (> 80%), while their genomic organization was somewhat different. This suggested that the two viral genomes identified here are variants of the family Closteroviridae in a single kiwifruit host. Furthermore, phylogenetic relationship analysis revealed that the two variants had a closer relationship with the unclassified virus Persimmon virus B (PeVB) and Actinidia virus 1 (AcV-1) than with other members of the family Closteroviridae, as did their genomic organization. It is speculated that the two variants, together with PeVB and AcV-1 belong to a new subfamily of Closteroviridae.


2021 ◽  
Author(s):  
Yanchen Li ◽  
Juntao Shen ◽  
Junyu Chen ◽  
Luofei Mo ◽  
Jieqiong Zhang ◽  
...  

Abstract Alisitipes phage SZW_AS01, a novel lytic phage that specifically infects Alistipes shahii, was isolated from wastewater samples in Shenzhen, China. The phage's genome consists of 45,392 bp, with a GC content of 47%. The genome encodes 56 putative open reading frames (ORFs) and 1 tRNA gene. Direct terminal repeats with a length of 55 bp are present at both ends of the genome. Phylogenetic analysis of the amino acid sequences of terminase large subunit shows that phage SZW_AS01 forms a distinct branch from the Siphoviridae family phages, but is far from the Podoviridae and Myoviridae family phages. Transmission electron microscopy confirmed that SZW_AS01 belongs to the Siphoviridae family. To the best of our knowledge, this is the first report of a lytic phage infecting bacteria in the Alistipes genus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saif ur Rehman ◽  
Tong Feng ◽  
Siwen Wu ◽  
Xier Luo ◽  
An Lei ◽  
...  

Buffalo is a luxurious genetic resource with multiple utilities (as a dairy, draft, and meat animal) and economic significance in the tropical and subtropical regions of the globe. The excellent potential to survive and perform on marginal resources makes buffalo an important source for nutritious products, particularly milk and meat. This study was aimed to investigate the evolutionary relationship, physiochemical properties, and comparative genomic analysis of the casein gene family (CSN1S1, CSN2, CSN1S2, and CSN3) in river and swamp buffalo. Phylogenetic, gene structure, motif, and conserved domain analysis revealed the evolutionarily conserved nature of the casein genes in buffalo and other closely related species. Results indicated that casein proteins were unstable, hydrophilic, and thermostable, although αs1-CN, β-CN, and κ-CN exhibited acidic properties except for αs2-CN, which behaved slightly basic. Comparative analysis of amino acid sequences revealed greater variation in the river buffalo breeds than the swamp buffalo indicating the possible role of these variations in the regulation of milk traits in buffalo. Furthermore, we identified lower transcription activators STATs and higher repressor site YY1 distribution in swamp buffalo, revealing its association with lower expression of casein genes that might subsequently affect milk production. The role of the main motifs in controlling the expression of casein genes necessitates the need for functional studies to evaluate the effect of these elements on the regulation of casein gene function in buffalo.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenjing Zhang ◽  
Yantao Liang ◽  
Kaiyang Zheng ◽  
Chengxiang Gu ◽  
Yundan Liu ◽  
...  

Abstract Background Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown. Results Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans. Conclusions These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage–host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member.


2004 ◽  
Vol 78 (4) ◽  
pp. 1954-1961 ◽  
Author(s):  
Blake Wiedenheft ◽  
Kenneth Stedman ◽  
Francisco Roberto ◽  
Deborah Willits ◽  
Anne-Kathrin Gleske ◽  
...  

ABSTRACT The complete genome sequences of two Sulfolobus spindle-shaped viruses (SSVs) from acidic hot springs in Kamchatka (Russia) and Yellowstone National Park (United States) have been determined. These nonlytic temperate viruses were isolated from hyperthermophilic Sulfolobus hosts, and both viruses share the spindle-shaped morphology characteristic of the Fuselloviridae family. These two genomes, in combination with the previously determined SSV1 genome from Japan and the SSV2 genome from Iceland, have allowed us to carry out a phylogenetic comparison of these geographically distributed hyperthermal viruses. Each virus contains a circular double-stranded DNA genome of ∼15 kbp with approximately 34 open reading frames (ORFs). These Fusellovirus ORFs show little or no similarity to genes in the public databases. In contrast, 18 ORFs are common to all four isolates and may represent the minimal gene set defining this viral group. In general, ORFs on one half of the genome are colinear and highly conserved, while ORFs on the other half are not. One shared ORF among all four genomes is an integrase of the tyrosine recombinase family. All four viral genomes integrate into their host tRNA genes. The specific tRNA gene used for integration varies, and one genome integrates into multiple loci. Several unique ORFs are found in the genome of each isolate.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 453
Author(s):  
Sebastian Estrada-Gómez ◽  
Leidy Johana Vargas-Muñoz ◽  
Cesar Segura Latorre ◽  
Monica Maria Saldarriaga-Cordoba ◽  
Claudia Marcela Arenas-Gómez

Nowadays, spider venom research focuses on the neurotoxic activity of small peptides. In this study, we investigated high-molecular-mass compounds that have either enzymatic activity or housekeeping functions present in either the venom gland or venom of Pamphobeteus verdolaga. We used proteomic and transcriptomic-assisted approaches to recognize the proteins sequences related to high-molecular-mass compounds present in either venom gland or venom. We report the amino acid sequences (partial or complete) of 45 high-molecular-mass compounds detected by transcriptomics showing similarity to other proteins with either enzymatic activity (i.e., phospholipases A2, kunitz-type, hyaluronidases, and sphingomyelinase D) or housekeeping functions involved in the signaling process, glucanotransferase function, and beta-N-acetylglucosaminidase activity. MS/MS analysis showed fragments exhibiting a resemblance similarity with different sequences detected by transcriptomics corresponding to sphingomyelinase D, hyaluronidase, lycotoxins, cysteine-rich secretory proteins, and kunitz-type serine protease inhibitors, among others. Additionally, we report a probably new protein sequence corresponding to the lycotoxin family detected by transcriptomics. The phylogeny analysis suggested that P. verdolaga includes a basal protein that underwent a duplication event that gave origin to the lycotoxin proteins reported for Lycosa sp. This approach allows proposing an evolutionary relationship of high-molecular-mass proteins among P. verdolaga and other spider species.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Jinjin Chen ◽  
Yilan Liu ◽  
Patrick Diep ◽  
Radhakrishnan Mahadevan

Acidithiobacillus ferridurans JAGS is a newly isolated acidophile from an acid mine drainage (AMD). The genome of isolate JAGS was sequenced and compared with eight other published genomes of Acidithiobacillus. The pairwise mutation distance (Mash) and average nucleotide identity (ANI) revealed that isolate JAGS had a close evolutionary relationship with A. ferridurans JCM18981, but whole-genome alignment showed that it had higher similarity in genomic structure with A. ferrooxidans species. Pan-genome analysis revealed that nine genomes were comprised of 4601 protein coding sequences, of which 43% were core genes (1982) and 23% were unique genes (1064). A. ferridurans species had more unique genes (205–246) than A. ferrooxidans species (21–234). Functional gene categorizations showed that A. ferridurans strains had a higher portion of genes involved in energy production and conversion while A. ferrooxidans had more for inorganic ion transport and metabolism. A high abundance of kdp, mer and ars genes, as well as mobile genetic elements, was found in isolate JAGS, which might contribute to its resistance to harsh environments. These findings expand our understanding of the evolutionary adaptation of Acidithiobacillus and indicate that A. ferridurans JAGS is a promising candidate for biomining and AMD biotreatment applications.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 54 ◽  
Author(s):  
Yoyeon Cha ◽  
Jihwan Chun ◽  
Bokyung Son ◽  
Sangryeol Ryu

Staphylococcus aureus is one of the notable human pathogens that can be easily encountered in both dietary and clinical surroundings. Among various countermeasures, bacteriophage therapy is recognized as an alternative method for resolving the issue of antibiotic resistance. In the current study, bacteriophage CSA13 was isolated from a chicken, and subsequently, its morphology, physiology, and genomics were characterized. This Podoviridae phage displayed an extended host inhibition effect of up to 23 hours of persistence. Its broad host spectrum included methicillin susceptible S. aureus (MSSA), methicillin resistant S. aureus (MRSA), local S. aureus isolates, as well as non-aureus staphylococci strains. Moreover, phage CSA13 could successfully remove over 78% and 93% of MSSA and MRSA biofilms in an experimental setting, respectively. Genomic analysis revealed a 17,034 bp chromosome containing 18 predicted open reading frames (ORFs) without tRNAs, representing a typical chromosomal structure of the staphylococcal Podoviridae family. The results presented here suggest that phage CSA13 can be applicable as an effective biocontrol agent against S. aureus.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Daniela Lepka ◽  
Tobias Kerrinnes ◽  
Evelyn Skiebe ◽  
Birgitt Hahn ◽  
Angelika Fruth ◽  
...  

We report the nucleotide sequence of two novel cryptic plasmids (4357 and 14 662 base pairs) carried by aYersinia enterocoliticabiotype 1A strain isolated from pork. As distinguished from most biotype 1A strains, this isolate, designated 07-04449, exhibited adherence to eukaryotic cells. The smaller plasmid pYe4449-1 carries five attributable open reading frames (ORFs) encoding the first CcdA/CcdB-like antitoxin/toxin system described for aYersiniaplasmid, a RepA-like replication initiation protein, and mobilizing factors MobA and MobC. The deduced amino acid sequences showed highest similarity to proteins described inSalmonella(CcdA/B),Klebsiella(RepA), andPlesiomonas(MobA/C) indicating genomic fluidity among members of theEnterobacteriaceae. One additional ORF with unknown function, termed ORF5, was identified with an ancestry distinct from the rest of the plasmid. While the C+G content of ORF5 is 38.3%, the rest of pYe4449-1 shows a C+G content of 55.7%. The C+G content of the larger plasmid pYe4449-2 (54.9%) was similar to that of pYe4449-1 (53.7%) and differed from that of theY. enterocoliticagenome (47.3%). Of the 14 ORFs identified on pYe4449-2, only six ORFs showed significant similarity to database entries. For three of these ORFs likely functions could be ascribed: a TnpR-like resolvase and a phage replication protein, localized each on a low C+G island, and DNA primase TraC. Two ORFs of pYe4449-2, ORF3 and ORF7, seem to encode secretable proteins. Epitope-tagging of ORF3 revealed protein expression at4°Cbut not at or above27°Csuggesting adaptation to a habitat outside swine. The hypothetical protein encoded by ORF7 is the member of a novel repeat protein family sharing theDxxGN(x)nDxxGNmotif. Our findings illustrate the exceptional gene pool diversity within the speciesY. enterocoliticadriven by horizontal gene transfer events.


Sign in / Sign up

Export Citation Format

Share Document