scholarly journals Application of an Improved DCGAN for Image GenerationApplication of an Improved DCGAN for Image Generation

Author(s):  
Bingqi Liu ◽  
Jiwei Lv ◽  
Xinyue Fan ◽  
Jie Luo ◽  
Tianyi Zou

Abstract With the rapid development of deep learning, image generation technology has become one of the current hot research areas. A deep convolutional generative adversarial network (DCGAN) can better adapt to complex image distributions than other methods. In this paper, based on a traditional generative adversarial networks (GANs) image generation model, first, the fully connected layer of the DCGAN is further improved. To solve the problem of gradient disappearance in GANs, the activation functions of all layers of the discriminator are LeakyReLU functions, the output layer of the generator uses the Tanh activation function, and the other layers use ReLU. Second, the improved DCGAN model is verified on the MNIST dataset, and simple initial fraction (ISs) and complex initial fraction (ISc) indexes are established from the two aspects of image quality and image generation diversity, respectively. Finally, through a comparison of the two groups of experiments, it is found that the quality of images generated by the DCGAN model constructed in this paper is 2.02 higher than that of the GANs model, and the diversity of the images generated by the DCGAN is 1.55 higher than that of GANs. The results show that the improved DCGAN model can solve the problem of low-quality images being generated by the GANs and achieve good results.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yingxi Yang ◽  
Hui Wang ◽  
Wen Li ◽  
Xiaobo Wang ◽  
Shizhao Wei ◽  
...  

Abstract Background Protein post-translational modification (PTM) is a key issue to investigate the mechanism of protein’s function. With the rapid development of proteomics technology, a large amount of protein sequence data has been generated, which highlights the importance of the in-depth study and analysis of PTMs in proteins. Method We proposed a new multi-classification machine learning pipeline MultiLyGAN to identity seven types of lysine modified sites. Using eight different sequential and five structural construction methods, 1497 valid features were remained after the filtering by Pearson correlation coefficient. To solve the data imbalance problem, Conditional Generative Adversarial Network (CGAN) and Conditional Wasserstein Generative Adversarial Network (CWGAN), two influential deep generative methods were leveraged and compared to generate new samples for the types with fewer samples. Finally, random forest algorithm was utilized to predict seven categories. Results In the tenfold cross-validation, accuracy (Acc) and Matthews correlation coefficient (MCC) were 0.8589 and 0.8376, respectively. In the independent test, Acc and MCC were 0.8549 and 0.8330, respectively. The results indicated that CWGAN better solved the existing data imbalance and stabilized the training error. Alternatively, an accumulated feature importance analysis reported that CKSAAP, PWM and structural features were the three most important feature-encoding schemes. MultiLyGAN can be found at https://github.com/Lab-Xu/MultiLyGAN. Conclusions The CWGAN greatly improved the predictive performance in all experiments. Features derived from CKSAAP, PWM and structure schemes are the most informative and had the greatest contribution to the prediction of PTM.


2021 ◽  
Vol 11 (4) ◽  
pp. 1380
Author(s):  
Yingbo Zhou ◽  
Pengcheng Zhao ◽  
Weiqin Tong ◽  
Yongxin Zhu

While Generative Adversarial Networks (GANs) have shown promising performance in image generation, they suffer from numerous issues such as mode collapse and training instability. To stabilize GAN training and improve image synthesis quality with diversity, we propose a simple yet effective approach as Contrastive Distance Learning GAN (CDL-GAN) in this paper. Specifically, we add Consistent Contrastive Distance (CoCD) and Characteristic Contrastive Distance (ChCD) into a principled framework to improve GAN performance. The CoCD explicitly maximizes the ratio of the distance between generated images and the increment between noise vectors to strengthen image feature learning for the generator. The ChCD measures the sampling distance of the encoded images in Euler space to boost feature representations for the discriminator. We model the framework by employing Siamese Network as a module into GANs without any modification on the backbone. Both qualitative and quantitative experiments conducted on three public datasets demonstrate the effectiveness of our method.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3913 ◽  
Author(s):  
Mingxuan Li ◽  
Ou Li ◽  
Guangyi Liu ◽  
Ce Zhang

With the recently explosive growth of deep learning, automatic modulation recognition has undergone rapid development. Most of the newly proposed methods are dependent on large numbers of labeled samples. We are committed to using fewer labeled samples to perform automatic modulation recognition in the cognitive radio domain. Here, a semi-supervised learning method based on adversarial training is proposed which is called signal classifier generative adversarial network. Most of the prior methods based on this technology involve computer vision applications. However, we improve the existing network structure of a generative adversarial network by adding the encoder network and a signal spatial transform module, allowing our framework to address radio signal processing tasks more efficiently. These two technical improvements effectively avoid nonconvergence and mode collapse problems caused by the complexity of the radio signals. The results of simulations show that compared with well-known deep learning methods, our method improves the classification accuracy on a synthetic radio frequency dataset by 0.1% to 12%. In addition, we verify the advantages of our method in a semi-supervised scenario and obtain a significant increase in accuracy compared with traditional semi-supervised learning methods.


2019 ◽  
Vol 19 (08) ◽  
pp. 1950092 ◽  
Author(s):  
Jiecheng Xiong ◽  
Jun Chen

Severe vibrations may occur on slender structures like footbridges and cantilever stands due to human-induced loads such as walking, jumping or bouncing. Currently, to develop a load model for structural design, the main features, such as periodicity and stationarity of experimental load records, are artificially extracted and then mathematically modeled. Different physical features have been included in different load models, i.e. no unified load model exists for different individual activities. The recently emerged generative adversarial networks can be used to model high-dimensional random variables. The probability distribution of these variables learned from real samples can be used to generate new samples, avoiding extracting features artificially. In this paper, a new model is proposed which combines the conditional generative adversarial networks and Wasserstein generative adversarial networks with gradient penalty to generate individual walking, jumping and bouncing loads. The generator of the model has five fully connected layers and a one-dimensional convolutional layer, and the discriminator has five fully connected layers. After one million training steps using the experimental records, the generator can generate high-quality samples similar to real samples in waveform. Finally, by comparing the power spectral densities and single degree of freedom system’s responses of the generated samples with real samples, it is further proved that the proposed generative adversarial network model can be used to simulate various human-induced loads. Source code of the model along with its trained weights is provided to the readers to further analysis and application.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3119 ◽  
Author(s):  
Jingtao Li ◽  
Zhanlong Chen ◽  
Xiaozhen Zhao ◽  
Lijia Shao

In recent years, the generative adversarial network (GAN)-based image translation model has achieved great success in image synthesis, image inpainting, image super-resolution, and other tasks. However, the images generated by these models often have problems such as insufficient details and low quality. Especially for the task of map generation, the generated electronic map cannot achieve effects comparable to industrial production in terms of accuracy and aesthetics. This paper proposes a model called Map Generative Adversarial Networks (MapGAN) for generating multitype electronic maps accurately and quickly based on both remote sensing images and render matrices. MapGAN improves the generator architecture of Pix2pixHD and adds a classifier to enhance the model, enabling it to learn the characteristics and style differences of different types of maps. Using the datasets of Google Maps, Baidu maps, and Map World maps, we compare MapGAN with some recent image translation models in the fields of one-to-one map generation and one-to-many domain map generation. The results show that the quality of the electronic maps generated by MapGAN is optimal in terms of both intuitive vision and classic evaluation indicators.


2020 ◽  
Author(s):  
Tarik Alafif

Generative Adversarial Network (GAN) has made a breakthrough and great success in many research areas in computer vision. Different GANs generate different outputs. In this research work, we apply different GANs to generate handwritten Arabic characters. A basic GAN, Vanilla GAN, Deep Convolutional GAN (DCGAN), Bidirectional GAN (BiGAN), and Wasserstein GAN (WGAN) are used. Then, the results of the generated images are evaluated using native-Arabic human and Fréchet Inception Distance (FID). The qualitative and quantitative results are provided for the images generation and evaluation. In experimental evaluation, WGAN achieves better results in FID with a value of 96.007. On the other hand, DCGAN achieves better results in native-Arabic human evaluation with a value of 35%.


2021 ◽  
Vol 11 (21) ◽  
pp. 10224
Author(s):  
Hsu-Yung Cheng ◽  
Chih-Chang Yu

In this paper, a framework based on generative adversarial networks is proposed to perform nature-scenery generation according to descriptions from the users. The desired place, time and seasons of the generated scenes can be specified with the help of text-to-image generation techniques. The framework improves and modifies the architecture of a generative adversarial network with attention models by adding the imagination models. The proposed attentional and imaginative generative network uses the hidden layer information to initialize the memory cell of the recurrent neural network to produce the desired photos. A data set containing different categories of scenery images is established to train the proposed system. The experiments validate that the proposed method is able to increase the quality and diversity of the generated images compared to the existing method. A possible application of road image generation for data augmentation is also demonstrated in the experimental results.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


2021 ◽  
Vol 11 (15) ◽  
pp. 7034
Author(s):  
Hee-Deok Yang

Artificial intelligence technologies and vision systems are used in various devices, such as automotive navigation systems, object-tracking systems, and intelligent closed-circuit televisions. In particular, outdoor vision systems have been applied across numerous fields of analysis. Despite their widespread use, current systems work well under good weather conditions. They cannot account for inclement conditions, such as rain, fog, mist, and snow. Images captured under inclement conditions degrade the performance of vision systems. Vision systems need to detect, recognize, and remove noise because of rain, snow, and mist to boost the performance of the algorithms employed in image processing. Several studies have targeted the removal of noise resulting from inclement conditions. We focused on eliminating the effects of raindrops on images captured with outdoor vision systems in which the camera was exposed to rain. An attentive generative adversarial network (ATTGAN) was used to remove raindrops from the images. This network was composed of two parts: an attentive-recurrent network and a contextual autoencoder. The ATTGAN generated an attention map to detect rain droplets. A de-rained image was generated by increasing the number of attentive-recurrent network layers. We increased the number of visual attentive-recurrent network layers in order to prevent gradient sparsity so that the entire generation was more stable against the network without preventing the network from converging. The experimental results confirmed that the extended ATTGAN could effectively remove various types of raindrops from images.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1349
Author(s):  
Stefan Lattner ◽  
Javier Nistal

Lossy audio codecs compress (and decompress) digital audio streams by removing information that tends to be inaudible in human perception. Under high compression rates, such codecs may introduce a variety of impairments in the audio signal. Many works have tackled the problem of audio enhancement and compression artifact removal using deep-learning techniques. However, only a few works tackle the restoration of heavily compressed audio signals in the musical domain. In such a scenario, there is no unique solution for the restoration of the original signal. Therefore, in this study, we test a stochastic generator of a Generative Adversarial Network (GAN) architecture for this task. Such a stochastic generator, conditioned on highly compressed musical audio signals, could one day generate outputs indistinguishable from high-quality releases. Therefore, the present study may yield insights into more efficient musical data storage and transmission. We train stochastic and deterministic generators on MP3-compressed audio signals with 16, 32, and 64 kbit/s. We perform an extensive evaluation of the different experiments utilizing objective metrics and listening tests. We find that the models can improve the quality of the audio signals over the MP3 versions for 16 and 32 kbit/s and that the stochastic generators are capable of generating outputs that are closer to the original signals than those of the deterministic generators.


Sign in / Sign up

Export Citation Format

Share Document