scholarly journals Production of Electroconductive, Superhydrphobic and Flame-Retardant Cotton Fibers via Pad-Dry-Cure Process using Silicone Rubber and Ammonium Polyphosphate

Author(s):  
Abdullah M. Al-Enizi ◽  
Asma A. Alothman ◽  
Mohd Ubaidullah ◽  
Ayman Nafady

Abstract Although pyrovatex has been widely utilized as commercial flame-retardant material, the discharge of poisonous formaldehyde is still a major concern. On the other side, fluorine-based materials have been successfully used to impart superhydrophobic textile surfaces, but they are highly expensive and extremely toxic. Based on these challenging concerns, we report a simple one-step method for the production of flame-retardant and water-repellent coating onto an electroconductive cotton-nickel (Cot-Ni) blend fabric. Firstly, the electroconductive cotton was prepared by weaving nickel strip twisted around cotton core yarns, which were then weaved with pure cotton yarns to introduce Cot-Ni blend fabric. Secondly a composite comprising ammonium polyphosphate (APP) and room-temperature vulcanized silicone rubber (RTV) was applied onto the electroconductive cotton fabrics via one-step pad-dry-cure technique. Results showed that the flame-retardant effect of cotton was enhanced due to the high binding of RTV with both APP and cotton fibers. Thus, different concentrations of APP were implemented in the composite to establish that only 100 g/L of APP with RTV presented an improved fire-retardancy. The surface of Cot-Ni fabric displayed different hierarchical morphologies relying on the concentration of APP. Moreover, RTV further enhanced the superhydrphobic nature of cotton surface. Importantly, the superhydrophobic activity was characterized by static water contact angle of the coated Cot-Ni blend. The CIE Lab colorimetric measurements of the coated Cot-Ni blend were also explored. The comfort characteristics of the coated Cot-Ni blend were assessed by measuring their air permeability and stiffness. Ultimately, these multifunctional cotton-nickel (Cot-Ni)/RTV-APP treated fabrics could be suitable for diverse applications, including firefighters’ wear, car seat mats, and grain storage containers.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoling Yao ◽  
Chungui Du ◽  
Yating Hua ◽  
Jingjing Zhang ◽  
Rui Peng ◽  
...  

In recent years, bamboo has been widely used for building materials and household goods. However, bamboo is flammable, so a flame-retardant treatment for bamboo is urgently needed. In this work, nano MgAl-layered double hydroxide (MgAl-LDH) coated on bamboo, which was called MgAl-LB, was synthesized by an in situ one-step method. To determine the optimal in situ time, the effects of different reaction times on LDH growth on the bamboo surface and the flame retardancy of the MgAl-LBs were investigated. The SEM observations show that LDH growth on the surface of bamboo was basically saturated when the in situ reaction time was 24 h. Abrasion experiments show that MgAl-LDH coating has good abrasion resistance. The fire performance of the MgAl-LBs was evaluated by cone calorimeter tests, which indicated that the THR and TSP of the MgAl-LBs were significantly lower than those of untreated bamboo. Taking into account the energy consumption problem, determining the reaction time of 24 h is the optimal reaction time. Compared with untreated bamboo, the THR and TSP of MgAl-LB prepared at 24 h decreased by 33.3% and 88.9%, respectively.


2017 ◽  
Vol 7 ◽  
pp. 184798041770279 ◽  
Author(s):  
Baojiang Liu ◽  
Taizhou Tian ◽  
Jinlong Yao ◽  
Changgen Huang ◽  
Wenjun Tang ◽  
...  

A robust superhydrophobic organosilica sol-gel-based coating on a cotton fabric substrate was successfully fabricated via a cost-effective one-step method. The coating was prepared by modification of silica nanoparticles with siloxane having long alkyl chain that allow to reduce surface energy. The coating on cotton fabric exhibited water contact angle of 151.6°. The surface morphology was evaluated by scanning electron microscopy, and surface chemical composition was measured with X-ray photoelectron spectroscopy. Results showed the enhanced superhydrophobicity that was attributed to the synergistic effect of roughness created by the random distribution of silica nanoparticles and the low surface energy imparted of long-chain alkane siloxane. In addition, the coating also showed excellent durability against washing treatments. Even after washed for 30 times, the specimen still had a water contact angle of 130°, indicating an obvious water-repellent property. With this outstanding property, the robust superhydrophobic coating exhibited a prospective application in textiles and plastics.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 392 ◽  
Author(s):  
Tian Shi ◽  
Xuewu Li ◽  
Qiaoxin Zhang ◽  
Ben Li

Corrosion failure is a thorny problem that restricts the application of Al alloys. As a new technique for functional realization, hydrophobic preparation offers an efficient approach to solve corrosion problem. This work has developed a facile and low-cost method to endow Al alloy with enhanced water-repellent and anticorrosion abilities. The micro-particles have been firstly prepared by one-step deposition process. Furthermore, wetting and electrochemical behaviors of as-prepared structures have been investigated after silicone modification. Results show that the fabricated surface possesses excellent superhydrophobicity with a water contact angle (CA) of 154.7° and a sliding angle (SA) of 6.7°. Meanwhile, the resultant surface is proved with enhanced corrosion resistance by reducing interfacial interactions with seawater, owing to newly-generated solid-air-liquid interfaces. This work sheds positive insights into extending applications of Al alloys, especially in oceaneering fields.


Cellulose ◽  
2021 ◽  
Author(s):  
Ling Sun ◽  
Yutong Xie ◽  
Jiamin Wu ◽  
Huixin Wang ◽  
Shihao Wang ◽  
...  
Keyword(s):  

2013 ◽  
Vol 770 ◽  
pp. 100-103
Author(s):  
Sunisa Jindasuwan ◽  
Nattinee Sukmanee ◽  
Chanida Supanpong ◽  
On-uma Nimittrakoolchai ◽  
Sitthisuntorn Supothina

A mulberry paper has been used to produce many consumer products such as lantern, card, packaging and decorating articles. Similar to other cellulosic materials, the mulberry paper bears abundant hydroxyl groups on its surface. Besides easily ignited, it can absorb water or humidity. To improve its thermal stability and to reduce deterioration caused by moisture adsorption, the mulberry paper was coated with a flame-retardant substance which was monoammonium phosphate (MAP) and a hydrophobic substance which was poly (methylhydrogen siloxane) (PMHS). The coating was conducted by immersing the mulberry paper in coating solution for 2 min followed by drying at 50 °C for 30 min. By varying a weight ratio of the PMHS and MAP, the PMHS:MAP weight ratio of 10:10 was found to be the optimum coating solution. The coated mulberry paper had good thermal property according to the thermogravimetric analysis. The uncoated mulberry paper showed residue of about 21% while the coated mulberry paper showed the increased residue of more than 50%. The burning test revealed that the coated mulberry paper was self-extinguished after removal of the ignition source while complete burning was observed on the uncoated paper. Moreover, it was water repellent with a water contact angle of 101.48 ± 5.81 degrees.


2019 ◽  
Vol 4 (13) ◽  
pp. 3811-3816 ◽  
Author(s):  
Meram S. Abdelrahman ◽  
Tawfik A. Khattab

1993 ◽  
Vol 58 (11) ◽  
pp. 2642-2650 ◽  
Author(s):  
Zdeněk Kruliš ◽  
Ivan Fortelný ◽  
Josef Kovář

The effect of dynamic curing of PP/EPDM blends with sulfur and thiuram disulfide systems on their mechanical properties was studied. The results were interpreted using the knowledge of the formation of phase structure in the blends during their melt mixing. It was shown, that a sufficiently slow curing reaction is necessary if a high impact strength is to be obtained. Only in such case, a fine and homogeneous dispersion of elastomer can be formed, which is the necessary condition for high impact strength of the blend. Using an inhibitor of curing in the system and a one-step method of dynamic curing leads to an increase in impact strength of blends. From the comparison of shear modulus and impact strength values, it follows that, at the stiffness, the dynamically cured blends have higher impact strength than the uncured ones.


2019 ◽  
Vol 375 ◽  
pp. 122000 ◽  
Author(s):  
Yang Xuan ◽  
Xian-Lin Song ◽  
Xiao-Quan Yang ◽  
Ruo-Yun Zhang ◽  
Zi-Yu Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document