scholarly journals Detecting objects behind scattering media using vortex beams and deep learning

Author(s):  
Ganesh M. Balasubramaniam ◽  
Netanel Biton ◽  
Shlomi Arnon

Abstract Reconstructing objects behind scattering media is a challenging issue with applications in biomedical imaging, non-distractive testing, computer-assisted surgery, and autonomous vehicular systems. Such systems’ main challenge is the multiple scattering of the photons in the angular and spatial domain, which results in a blurred image. Previous works try to improve the reconstructing ability using deep learning algorithms, with some success. We enhance these methods by illuminating the set-up using several modes of vortex beams obtaining a series of time-gated images corresponding to each mode. The images are accurately reconstructed using a deep learning algorithm by analyzing the pattern captured in the camera. This study shows that using vortex beams instead of Gaussian beams enhances the deep learning algorithm’s image reconstruction ability in terms of the peak signal-to-noise ratio (PSNR) by ~ 2.5 dB and ~1 dB when low and high scattering scatterers are used respectively.

2021 ◽  
Author(s):  
Ayumi Koyama ◽  
Dai Miyazaki ◽  
Yuji Nakagawa ◽  
Yuji Ayatsuka ◽  
Hitomi Miyake ◽  
...  

Abstract Corneal opacities are an important cause of blindness, and its major etiology is infectious keratitis. Slit-lamp examinations are commonly used to determine the causative pathogen; however, their diagnostic accuracy is low even for experienced ophthalmologists. To characterize the “face” of an infected cornea, we have adapted a deep learning architecture used for facial recognition and applied it to determine a probability score for a specific pathogen causing keratitis. To record the diverse features and mitigate the uncertainty, batches of probability scores of 4 serial images taken from many angles or fluorescence staining were learned for score and decision level fusion using a gradient boosting decision tree. A total of 4306 slit-lamp images and 312 images obtained by internet publications on keratitis by bacteria, fungi, acanthamoeba, and herpes simplex virus (HSV) were studied. The created algorithm had a high overall accuracy of diagnosis, e.g., the accuracy/area under the curve (AUC) for acanthamoeba was 97.9%/0.995, bacteria was 90.7%/0.963, fungi was 95.0%/0.975, and HSV was 92.3%/0.946, by group K-fold validation, and it was robust to even the low resolution web images. We suggest that our hybrid deep learning-based algorithm be used as a simple and accurate method for computer-assisted diagnosis of infectious keratitis.


2021 ◽  
Vol 10 (9) ◽  
pp. 205846012110447
Author(s):  
Ryo Ogawa ◽  
Tomoyuki Kido ◽  
Masashi Nakamura ◽  
Atsushi Nozaki ◽  
R Marc Lebel ◽  
...  

Background Deep learning–based methods have been used to denoise magnetic resonance imaging. Purpose The purpose of this study was to evaluate a deep learning reconstruction (DL Recon) in cardiovascular black-blood T2-weighted images and compare with intensity filtered images. Material and Methods Forty-five DL Recon images were compared with intensity filtered and the original images. For quantitative image analysis, the signal to noise ratio (SNR) of the septum, contrast ratio (CR) of the septum to lumen, and sharpness of the endocardial border were calculated in each image. For qualitative image quality assessment, a 4-point subjective scale was assigned to each image (1 = poor, 2 = fair, 3 = good, 4 = excellent). Results The SNR and CR were significantly higher in the DL Recon images than in the intensity filtered and the original images ( p < .05 in each). Sharpness of the endocardial border was significantly higher in the DL Recon and intensity filtered images than in the original images ( p < .05 in each). The image quality of the DL Recon images was significantly better than that of intensity filtered and original images ( p < .001 in each). Conclusions DL Recon reduced image noise while improving image contrast and sharpness in the cardiovascular black-blood T2-weight sequence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayumi Koyama ◽  
Dai Miyazaki ◽  
Yuji Nakagawa ◽  
Yuji Ayatsuka ◽  
Hitomi Miyake ◽  
...  

AbstractCorneal opacities are important causes of blindness, and their major etiology is infectious keratitis. Slit-lamp examinations are commonly used to determine the causative pathogen; however, their diagnostic accuracy is low even for experienced ophthalmologists. To characterize the “face” of an infected cornea, we have adapted a deep learning architecture used for facial recognition and applied it to determine a probability score for a specific pathogen causing keratitis. To record the diverse features and mitigate the uncertainty, batches of probability scores of 4 serial images taken from many angles or fluorescence staining were learned for score and decision level fusion using a gradient boosting decision tree. A total of 4306 slit-lamp images including 312 images obtained by internet publications on keratitis by bacteria, fungi, acanthamoeba, and herpes simplex virus (HSV) were studied. The created algorithm had a high overall accuracy of diagnosis, e.g., the accuracy/area under the curve for acanthamoeba was 97.9%/0.995, bacteria was 90.7%/0.963, fungi was 95.0%/0.975, and HSV was 92.3%/0.946, by group K-fold validation, and it was robust to even the low resolution web images. We suggest that our hybrid deep learning-based algorithm be used as a simple and accurate method for computer-assisted diagnosis of infectious keratitis.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 964
Author(s):  
Shihong Wang ◽  
Jiayi Guo ◽  
Yueting Zhang ◽  
Yuxin Hu ◽  
Chibiao Ding ◽  
...  

Synthetic aperture radar tomography (TomoSAR) is an important 3D mapping method. Traditional TomoSAR requires a large number of observation orbits however, it is hard to meet the requirement of massive orbits. While on the one hand, this is due to funding constraints, on the other hand, because the target scene is changing over time and each observation orbit consumes lots of time, the number of orbits can be fewer as required within a narrow time window. When the number of observation orbits is insufficient, the signal-to-noise ratio (SNR), peak-to-sidelobe ratio (PSR), and resolution of 3D reconstruction results will decline severely, which seriously limits the practical application of TomoSAR. In order to solve this problem, we propose to use a deep learning network to improve the resolution and SNR of 3D reconstruction results under the condition of very few observation orbits by learning the prior distribution of targets. We use all available orbits to reconstruct a high resolution target, while only very few (around 3) orbits to reconstruct a low resolution input. The low-res and high-res 3D voxel-grid pairs are used to train a 3D super-resolution (SR) CNN (convolutional neural network) model, just like ordinary 2D image SR tasks. Experiments on the Civilian Vehicle Radar dataset show that the proposed deep learning algorithm can effectively improve the reconstruction both in quality and in quantity. In addition, the model also shows good generalization performance for targets not shown in the training set.


Sign in / Sign up

Export Citation Format

Share Document