scholarly journals Performance Analysis of MAC Layer Protocols for WSN with Considering the Effects of Hidden Node Problem

Author(s):  
Kaeed Ketab Kaeed ◽  
Salah Abdulghani Alabady

Abstract Wireless sensor networks (WSNs) are consisting of a large number of sensor nodes that sense, gather, and process-specific data. Its importance is dedicated to its enormous application range. It could be used with industrial applications, agricultural applications, military applications, industrial applications, and a lot of other applications, which make it an open area for study by researchers and students. In this paper, the effects of the hidden node problem are studied on three different MAC protocols using various field distances and various numbers of nodes. This study provides the best number of nodes to be disseminated in a specific field distance depending on the needed performance metrics. Six performance metrics are used in this study, which is Goodput, Throughput, PDR, Residual Energy, Average Delay, and first and last node dead in the network. IEEE 802.11, IEEE 802.15.4, and TDMA protocols are the used protocols in this study. Eight different scenarios were proposed and implemented for this study. NS2 is used to construct the proposed scenarios. Results show that TDMA gives the best energy conservation and high delay time with high PDR, while IEEE 802.11 provides the best throughput and Goodput results and low delay time. A graphical view for the results was made to ease of study and analysis.

2020 ◽  
Vol 71 (5) ◽  
pp. 365-367
Author(s):  
Woo-Yong Choi

Abstract In IEEE 80211 wireless LANs, hidden nodes can disrupt the backoff algorithm of other nodes that are located outside the physical carrier sensing range of hidden nodes. The fairness problem between the nodes that are vulnerable and not vulnerable to the hidden node problem is dealt with in this paper. We propose an efficient fair MAC protocol to resolve the fairness problem.


2019 ◽  
Vol 18 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Kofoworola Fapohunda ◽  
Eberechukwu Numan Paulson ◽  
Zubair Suleiman ◽  
Oladimeji Saliu ◽  
David Michael ◽  
...  

Hidden node problem sometimes referred to as frequent packets collision that mostly leads to loss of packets is no longer new in wireless networks because it affects the previous IEEE802.11 standards. The new IEEE802.11ah standard which is also a sub-standard of IEEE 802.11 is no exemption. As a matter of fact, IEEE802.11ah suffers from a hidden node problem more than networks (IEEE 802.11a/b/n/ac) due to their wider coverage which is up to 1km, high number of devices they can support (over 8000 nodes to one AP) and frequent simultaneous sleeping and sending of the nodes (power saving mode). A few researchers have worked on this hidden node problem in IEEE802.11ah but could not get a lasting solution to it. Therefore, this paper proposes an algorithm which detects hidden nodes and also proposes a theoretical solution based on previous works which was also experimentally verified through the BIHD-CM.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Haiying Che ◽  
Zixing Bai ◽  
Rong Zuo ◽  
Honglei Li

With more businesses are running online, the scale of data centers is increasing dramatically. The task-scheduling operation with traditional heuristic algorithms is facing the challenges of uncertainty and complexity of the data center environment. It is urgent to use new technology to optimize the task scheduling to ensure the efficient task execution. This study aimed at building a new scheduling model with deep reinforcement learning algorithm, which integrated the task scheduling with resource-utilization optimization. The proposed scheduling model was trained, tested, and compared with classical scheduling algorithms on real data center datasets in experiments to show the effectiveness and efficiency. The experiment report showed that the proposed algorithm worked better than the compared classical algorithms in the key performance metrics: average delay time of tasks, task distribution in different delay time levels, and task congestion degree.


2021 ◽  
Author(s):  
Haleh Khojasteh

In this thesis, we attempt to solve the problem of WLAN/RFID coexistence and integration in frequency band of GHz or ISM band. Our solution to this problem is to allow the WLAN access and RFID access in a time-sharing manner by making the WLAN Access Point aware of the RFID neighbor-network at MAC layer. The time-sharing function is implemented using IEEE 802.11 PCF mechanism. RFID network is implemented using two different standards. The first one is Framed Slotted Aloha standard and the second one is IEEE 802.15.4 standard. We have simulated both models using Artifex simulator and compared their performance using some performance metrics like collision probability and average number of collision in each superframe. It is shown that IEEE 802.15.4 based model outperforms the Framed Slotted Aloha based model.


2018 ◽  
Vol 69 (4) ◽  
pp. 323-325
Author(s):  
Woo-Yong Choi

Abstract Combining the IEEE 802.11 basic MAC (medium access control) protocols, which are the DCF (distributed coordination function) and the PCF (point coordination function), we propose a hybrid MAC protocol to improve the performance of IEEE 802.11 wireless LANs and mitigate the hidden node problem.


2021 ◽  
Author(s):  
Haleh Khojasteh

In this thesis, we attempt to solve the problem of WLAN/RFID coexistence and integration in frequency band of GHz or ISM band. Our solution to this problem is to allow the WLAN access and RFID access in a time-sharing manner by making the WLAN Access Point aware of the RFID neighbor-network at MAC layer. The time-sharing function is implemented using IEEE 802.11 PCF mechanism. RFID network is implemented using two different standards. The first one is Framed Slotted Aloha standard and the second one is IEEE 802.15.4 standard. We have simulated both models using Artifex simulator and compared their performance using some performance metrics like collision probability and average number of collision in each superframe. It is shown that IEEE 802.15.4 based model outperforms the Framed Slotted Aloha based model.


Sign in / Sign up

Export Citation Format

Share Document