scholarly journals SARS-CoV-2 mRNA vaccines induce a robust germinal centre reaction in humans

Author(s):  
Ali Ellebedy ◽  
Jackson Turner ◽  
Jane O'Halloran ◽  
Elizaveta Kalaidina ◽  
Wooseob Kim ◽  
...  

Abstract Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA)-based vaccines are ~95% effective in preventing coronavirus disease 2019. However, the dynamics of antibody secreting plasmablasts (PBs) and germinal centre (GC) B cells induced by these vaccines in SARS-CoV-2 naïve and antigen-experienced humans remains unclear. Here we examined peripheral blood and/or lymph node (LN) antigen-specific B cell responses in 32 individuals who received two doses of BNT162b2, an mRNA-based vaccine encoding the full-length SARS-CoV-2 spike (S) gene. Circulating IgG- and IgA-secreting PBs targeting the S protein peaked one week after the second immunization then declined and were undetectable three weeks later. PB responses coincided with maximal levels of serum anti-S binding and neutralizing antibodies to a historical strain as well as emerging variants, especially in individuals previously infected with SARS-CoV-2, who produced the most robust serological responses. Fine needle aspirates of draining axillary LNs identified GC B cells that bind S protein in all participants sampled after primary immunization. GC responses increased after boosting and were detectable in two distinct LNs in several participants. Remarkably, high frequencies of S-binding GC B cells and PBs were maintained in draining LNs for up to seven weeks after first immunization, with a substantial fraction of the PB pool class-switched to IgA. GC B cell-derived monoclonal antibodies predominantly targeted the RBD, with fewer clones binding to the N-terminal domain or shared epitopes within the S proteins of human betacoronaviruses OC43 and HKU1. Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a robust and persistent GC B cell response that engages pre-existing as well as new B cell clones, which enables generation of high-affinity, broad, and durable humoral immunity.

2021 ◽  
Author(s):  
R Camille Brewer ◽  
Nitya S Ramadoss ◽  
Lauren J Lahey ◽  
William H Robinson ◽  
Tobias V Lanz

The first ever messenger RNA (mRNA) vaccines received emergency approvals in December 2020 and are highly protective against SARS-CoV-2. However, the contribution of each dose to the generation of antibodies against SARS-CoV-2 spike (S) protein and the degree of protection against novel variants, including delta, warrant further study. Here, we investigated the B cell response to the BNT162b2 vaccine by integrating repertoire analysis with single-cell transcriptomics of B cells from serial blood collections pre- and post-vaccination. The first vaccine dose elicits highly mutated IgA+ plasmablasts against the S protein subunit S2 at day 7, suggestive of recall of a memory B cell response generated by prior infections with heterologous coronaviruses. On day 21, we observed minimally-mutated IgG+ activated switched memory B cells targeting the receptor binding domain (RBD) of the S protein, likely representing a primary response derived from naive B cells. The B cell response against RBD is specifically boosted by the second vaccine dose, and encodes antibodies that potently neutralize SARS-CoV-2 pseudovirus and partially neutralize novel variants, including delta. These results demonstrate that the first vaccine dose activates a non-neutralizing recall response predominantly targeting S2, while the second vaccine dose is vital to boosting neutralizing anti-S1 RBD B cell responses.


1975 ◽  
Vol 142 (5) ◽  
pp. 1165-1179 ◽  
Author(s):  
S K Pierce ◽  
N R Klinman

The ability of T cells to enhance the response of syngeneic and allogeneic B cells to thymus-dependent hapten-carrier conjugates was analyzed. This analysis was carried out on individual primary B cells in splenic fragment cultures derived from irradiated reconstituted mice. This system has several advantages: (a) the response of the B cells is entirely dependent on carrier priming of the irradiated recipient; (b) this B-cell response can be quantitated in terms of the number of responding cells; and (c) very small B-cell responses can be readily detected and analyzed. The results indicate that the majority of hapten-specific B cells were stimulated in allogeneic and syngeneic recipients only if these recipients were previously carrier primed. The number of B cells responding in carrier-primed allogeneic recipients was 60-70% of that in syngeneic carrier-primed recipients. The antibody-forming cell clones resulting from B cells stimulated in the allogeneic environment produced small amounts of antibody and antibody solely of the IgM immunoglobulin class, while the larger responses in syngeneic recipients were predominantly IgG1 or IgM plus IgG1. The capacity of collaborative interactions between carrier-primed T cells and primary B cells to yield IgG1 antibody-producing clones was shown to be dependent on syngeny between these cells in the H-2 gene complex. It is concluded that: (a) B cells can be triggered by T-dependent antigens to clone formation through collaboration with T cells which differ at the H-2 complex as long as these T cells recognize the antigen; (b) the immunoglobulin class produced by the progeny of stimulated B cells generally depends on the nature of the stimulatory event rather than the nature of the B cell itself; and (c) stimulation to IgG1 production is dependent on syngeny between the collaborating T and B cells probably within the Ir-1A region. The role of the Ia antigens in the formation of IgG1-producing clones is not yet clear; Ia identity could permit IgG1 production or, conversely, nonidentity of Ia could induce all allogeneic interactions which prohibit IgG1 production.


2018 ◽  
Vol 215 (6) ◽  
pp. 1571-1588 ◽  
Author(s):  
Norbert Pardi ◽  
Michael J. Hogan ◽  
Martin S. Naradikian ◽  
Kaela Parkhouse ◽  
Derek W. Cain ◽  
...  

T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.


1987 ◽  
Vol 165 (2) ◽  
pp. 340-358 ◽  
Author(s):  
L W Duran ◽  
E S Metcalf

In the present study, a modification of the splenic focus system is used to analyze the S. typhimurium strain TML (TML)-specific B cell repertoire. The results show that the frequency of primary TML-specific splenic B cells in CBA/Ca mice is approximately 1 per 10(5) B cells and less than 30% of these B cells are specific for LPS. In contrast, the frequency of memory TML-specific cells is approximately 1 per 5-8 X 10(3) splenic B cells and greater than 95% of these B cells are specific for LPS. These results suggest that the frequency of primary TML-specific B cells is extremely low and that it expands 15-20-fold after antigen exposure. It is interesting that less than 30% of the primary B cells are specific for the LPS molecule since it is considered to be the major antigenic determinant on Salmonella organisms. Furthermore, the majority of the LPS-specific anti-TML antibody-producing clones are directed against the LPS O antigen region. Conversely, more than half to two-thirds of the memory LPS-specific anti-TML B cell clones are directed against the KDO or lipid A region of the LPS molecule. These results indicate that the preferential expansion of LPS-specific B cell clones observed after immunization resides primarily in the B cell subsets responsive to the KDO/lipid A moieties on the LPS molecule. Finally, unlike B cell responses to chemically defined antigens, TML stimulates very little IgG1 antibody. IgG2 and IgA isotypes appear to play a predominant role in anti-TML antibody responses, although all H chain classes are produced to some extent. Collectively, these findings are consistent with the responses reported for two other natural antigens, HA and PC. Hence, the pattern of stimulation by infectious agents, such as S. typhimurium, appears to be distinct from that of synthetic antigens. Thus, the studies presented herein have begun to provide insights into those subsets of B cells responsive to S. typhimurium and other infectious disease organisms.


Author(s):  
Sandra C. A. Nielsen ◽  
Fan Yang ◽  
Ramona A. Hoh ◽  
Katherine J. L. Jackson ◽  
Katharina Roeltgen ◽  
...  

Abstract During virus infection B cells are critical for the production of antibodies and protective immunity. Establishment of a diverse antibody repertoire occurs by rearrangement of germline DNA at the immunoglobulin heavy and light chain loci to encode the membrane-bound form of antibodies, the B cell antigen receptor. Little is known about the B cells and antigen receptors stimulated by the novel human coronavirus SARS-CoV-2. Here we show that the human B cell compartment in patients with diagnostically confirmed SARS-CoV-2 and clinical COVID-19 is rapidly altered with the early recruitment of B cells expressing a limited subset of V genes, and extensive activation of IgG and IgA subclasses without significant somatic mutation. We detect expansion of B cell clones as well as convergent antibodies with highly similar sequences across SARS-CoV-2 patients, highlighting stereotyped naïve responses to this virus. A shared convergent B cell clonotype in SARS-CoV-2 infected patients was previously seen in patients with SARS. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and other zoonotic spillover coronaviruses.


2021 ◽  
Author(s):  
Katlyn Lederer ◽  
Kalpana Parvathaneni ◽  
Mark M Painter ◽  
Emily Bettini ◽  
Divyansh Agarwal ◽  
...  

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. In this study, through a fine-needle-aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant (KTX) recipients. We found that, unlike healthy subjects, KTX recipients presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cells, SARS-CoV-2 receptor-binding-domain-specific memory B cells and neutralizing antibodies. KTX recipients also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals, and suggest a GC-origin for certain humoral and memory B cell responses following mRNA vaccination.


2021 ◽  
Author(s):  
Emanuele Andreano ◽  
Ida Paciello ◽  
Giulia Piccini ◽  
Noemi Manganaro ◽  
Piero Pileri ◽  
...  

To understand the nature of the antibody response to SARS-CoV-2 vaccination, we analyzed at single cell level the B cell responses of five naïve and five convalescent people immunized with the BNT162b2 mRNA vaccine. Convalescents had higher frequency of spike protein specific memory B cells and by cell sorting delivered 3,532 B cells, compared with 2,352 from naïve people. Of these, 944 from naïve and 2,299 from convalescents produced monoclonal antibodies against the spike protein and 411 of them neutralized the original Wuhan SARS-CoV-2 virus. More than 75% of the monoclonal antibodies from naïve people lost their neutralization activity against the B.1.351 (beta) and B.1.1.248 (gamma) variants while this happened only for 61% of those from convalescents. The overall loss of neutralization was lower for the B.1.1.7 (alpha) and B.1.617.2 (delta) variants, however it was always significantly higher in those of naïve people. In part this was due to the IGHV2-5;IGHJ4-1 germline, which was found only in convalescents and generated potent and broadly neutralizing antibodies. Overall, vaccination of seropositive people increases the frequency of B cells encoding antibodies with high potency and that are not susceptible to escape by any of the four variants of concern. Our data suggest that people that are seropositive following infection or primary vaccination will produce antibodies with increased potency and breadth and will be able to better control SARS-CoV-2 emerging variants.


2021 ◽  
pp. annrheumdis-2021-220435
Author(s):  
Theresa Graalmann ◽  
Katharina Borst ◽  
Himanshu Manchanda ◽  
Lea Vaas ◽  
Matthias Bruhn ◽  
...  

ObjectivesThe monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses.MethodsCD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens.ResultsRituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I.ConclusionsDepending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.


2021 ◽  
Vol 147 (2) ◽  
pp. AB3
Author(s):  
Adora Lin ◽  
Hemant Sharma ◽  
Pamela Guerrerio ◽  
Catherine Bollard

Sign in / Sign up

Export Citation Format

Share Document