scholarly journals Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals

Author(s):  
Katlyn Lederer ◽  
Kalpana Parvathaneni ◽  
Mark M Painter ◽  
Emily Bettini ◽  
Divyansh Agarwal ◽  
...  

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. In this study, through a fine-needle-aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant (KTX) recipients. We found that, unlike healthy subjects, KTX recipients presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cells, SARS-CoV-2 receptor-binding-domain-specific memory B cells and neutralizing antibodies. KTX recipients also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals, and suggest a GC-origin for certain humoral and memory B cell responses following mRNA vaccination.

2018 ◽  
Vol 92 (9) ◽  
pp. e01970-17 ◽  
Author(s):  
Sinthujan Jegaskanda ◽  
Rosemarie D. Mason ◽  
Sarah F. Andrews ◽  
Adam K. Wheatley ◽  
Ruijun Zhang ◽  
...  

ABSTRACTPandemic live attenuated influenza vaccines (pLAIV) prime subjects for a robust neutralizing antibody response upon subsequent administration of a pandemic inactivated subunit vaccine (pISV). However, a difference was not detected in H5-specific memory B cells in the peripheral blood between pLAIV-primed and unprimed subjects prior to pISV boost. To investigate the mechanism underlying pLAIV priming, we vaccinated groups of 12 African green monkeys (AGMs) with H5N1 pISV or pLAIV alone or H5N1 pLAIV followed by pISV and examined immunity systemically and in local draining lymph nodes (LN). The AGM model recapitulated the serologic observations from clinical studies. Interestingly, H5N1 pLAIV induced robust germinal center B cell responses in the mediastinal LN (MLN). Subsequent boosting with H5N1 pISV drove increases in H5-specific B cells in the axillary LN, spleen, and circulation in H5N1 pLAIV-primed animals. Thus, H5N1 pLAIV primes localized B cell responses in the MLN that are recalled systemically following pISV boost. These data provide mechanistic insights for the generation of robust humoral responses via prime-boost vaccination.IMPORTANCEWe have previously shown that pandemic live attenuated influenza vaccines (pLAIV) prime for a rapid and robust antibody response on subsequent administration of inactivated subunit vaccine (pISV). This is observed even in individuals who had undetectable antibody (Ab) responses following the initial vaccination. To define the mechanistic basis of pLAIV priming, we turned to a nonhuman primate model and performed a detailed analysis of B cell responses in systemic and local lymphoid tissues following prime-boost vaccination with pLAIV and pISV. We show that the nonhuman primate model recapitulates the serologic observations from clinical studies. Further, we found that pLAIVs induced robust germinal center B cell responses in the mediastinal lymph node. Subsequent boosting with pISV in pLAIV-primed animals resulted in detection of B cells in the axillary lymph nodes, spleen, and peripheral blood. We demonstrate that intranasally administered pLAIV elicits a highly localized germinal center B cell response in the mediastinal lymph node that is rapidly recalled following pISV boost into germinal center reactions at numerous distant immune sites.


2020 ◽  
Vol 11 ◽  
Author(s):  
Austin Negron ◽  
Olaf Stüve ◽  
Thomas G. Forsthuber

While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3382-3382
Author(s):  
Peter Allacher ◽  
Christina Hausl ◽  
Aniko Ginta Pordes ◽  
Rafi Uddin Ahmad ◽  
Hartmut J Ehrlich ◽  
...  

Abstract Memory B cells are essential for maintaining long-term antibody responses. They can persist for years even in the absence of antigen and are rapidly re-stimulated to differentiate into antibody-producing plasma cells when they encounter their specific antigen. Previously we demonstrated that ligands for TLR 7 and 9 amplify the differentiation of FVIII-specific memory B cells into anti-FVIII antibody-producing plasma cells at low concentrations of FVIII and prevent the inhibition of memory-B-cell differentiation at high concentrations of FVIII. The modulation of FVIII-specific memory-B-cell responses by agonists for TLR is highly relevant for the design of new immunotherapeutic approaches in patients with FVIII inhibitors because TLR are activated by a range of different viral and bacterial components. Specifically, TLR 7 is triggered by single-stranded RNA derived from viruses and TLR 9 is triggered by bacterial DNA containing unmethylated CpG motifs. We further explored the modulation of FVIII-specific memory-B-cell responses by agonists for TLRs by studying a broad range of concentrations of CpG DNA, a ligand for TLR 9, both in vitro and in vivo using the murine E17 model of hemophilia A. We used CpG-DNA in concentrations ranging from 0.1 to 10,000 ng/ml to study the modulation of FVIII-specific memory-B-cell responses in vitro and verified the specificity of the effects observed by including a blocking agent for TLR 9 and GpC-DNA, a non-stimulating negative control for CpG DNA. Furthermore, we used doses of CpG DNA ranging from 10 to 50,000 ng per dose to study the modulation of FVIII-specific memory-B-cell responses in vivo. E17 hemophilic mice were treated with a single intravenous dose of 200 ng FVIII to stimulate the generation of FVIII-specific memory B cells and were subsequently treated with another dose of FVIII that was given together with CpG DNA. We analyzed titers of anti-FVIII antibodies in the circulation of these mice one week after the second dose of FVIII. Previously we had shown that a single dose of 200 ng FVIII, given intravenously to E17 hemophilic mice, stimulates the formation of FVIII-specific memory B cells but is not sufficient to induce anti-FVIII antibodies that would be detectable in the circulation. Our results demonstrate a biphasic effect of CpG DNA on the re-stimulation of FVIII-specific memory B cells and their differentiation into antibody-producing plasma cells. Both in vitro and in vivo studies show that CpG DNA at high doses inhibits the re-stimulation and differentiation of FVIII-specific memory B cells. However, CpG DNA at low doses amplifies these processes. Amplification and inhibition of memory-B-cell responses are due to specific interactions of CpG DNA with TLR 9. Both effects are blocked by addition of a blocking agent for TLR 9 in vitro. We conclude that triggering of TLR 9 by bacterial DNA has a substantial influence on FVIII-specific memory-B-cell responses. The consequence of TLR 9 triggering can be inhibitory or stimulatory, depending on the actual concentration of the bacterial DNA. Our findings demonstrate the potential modulatory effects of bacterial infections on the regulation of FVIII inhibitor development.


2021 ◽  
Author(s):  
Leire de Campos-Mata ◽  
Sonia Tejedor Vaquero ◽  
Roser Tachó-Piñot ◽  
Janet Piñero ◽  
Emilie K. Grasset ◽  
...  

SARS-CoV-2 infection induces virus-reactive memory B cells expressing unmutated antibodies, which hints at their emergence from naïve B cells. Yet, the dynamics of virus-specific naïve B cells and their impact on immunity and immunopathology remain unclear. Here, we longitudinally studied moderate to severe COVID-19 patients to dissect SARS-CoV-2-specific B cell responses overtime. We found a broad virus-specific antibody response during acute infection, which evolved into an IgG1-dominated response during convalescence. Acute infection was associated with increased mature B cell progenitors in the circulation and the unexpected expansion of virus-targeting naïve-like B cells that further augmented during convalescence together with virus-specific memory B cells. In addition to a transitory increase in tissue-homing CXCR3+ plasmablasts and extrafollicular memory B cells, most COVID-19 patients showed persistent activation of CD4+ and CD8+ T cells along with transient or long-lasting changes of key innate immune cells. Remarkably, virus-specific antibodies and the frequency of naïve B cells were among the major variables defining distinct immune signatures associated with disease severity and inflammation. Aside from providing new insights into the complexity of the immune response to SARS-CoV-2, our findings indicate that the de novo recruitment of mature B cell precursors into the periphery may be central to the induction of antiviral immunity.


2018 ◽  
Vol 215 (6) ◽  
pp. 1571-1588 ◽  
Author(s):  
Norbert Pardi ◽  
Michael J. Hogan ◽  
Martin S. Naradikian ◽  
Kaela Parkhouse ◽  
Derek W. Cain ◽  
...  

T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.


2017 ◽  
Vol 24 (5) ◽  
Author(s):  
Sasirekha Ramani ◽  
Frederick H. Neill ◽  
Jennifer Ferreira ◽  
John J. Treanor ◽  
Sharon E. Frey ◽  
...  

ABSTRACT Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis worldwide. A virus-like particle (VLP) candidate vaccine induces the production of serum histo-blood group antigen (HBGA)-blocking antibodies, the first identified correlate of protection from HuNoV gastroenteritis. Recently, virus-specific IgG memory B cells were identified to be another potential correlate of protection against HuNoV gastroenteritis. We assessed B-cell responses following intramuscular administration of a bivalent (genogroup I, genotype 1 [GI.1]/genogroup II, genotype 4 [GII.4]) VLP vaccine using protocols identical to those used to evaluate cellular immunity following experimental GI.1 HuNoV infection. The kinetics and magnitude of cellular immunity to G1.1 infection were compared to those after VLP vaccination. Intramuscular immunization with the bivalent VLP vaccine induced the production of antibody-secreting cells (ASCs) and memory B cells. ASC responses peaked at day 7 after the first dose of vaccine and returned to nearly baseline levels by day 28. Minimal increases in ASCs were seen after a second vaccine dose at day 28. Antigen-specific IgG memory B cells persisted at day 180 postvaccination for both GI.1 and GII.4 VLPs. The overall trends in B-cell responses to vaccination were similar to the trends in the responses to infection, where there was a greater bias of an ASC response toward IgA and a memory B-cell response to IgG. The magnitude of the ASC and memory B-cell responses to the GI.1 VLP component of the vaccine was also comparable to that of the responses following GI.1 infection. The production of IgG memory B cells and persistence at day 180 is a key finding and underscores the need for future studies to determine if IgG memory B cells are a correlate of protection following vaccination. (This study has been registered at ClinicalTrials.gov under registration no. NCT01168401.)


2020 ◽  
Vol 218 (2) ◽  
Author(s):  
Angelica W.Y. Lau ◽  
Vivian M. Turner ◽  
Katherine Bourne ◽  
Jana R. Hermes ◽  
Tyani D. Chan ◽  
...  

The TNF superfamily ligand BAFF maintains the survival of naive B cells by signaling through its surface receptor, BAFFR. Activated B cells maintain expression of BAFFR after they differentiate into germinal center (GC) or memory B cells (MBCs). However, the functions of BAFFR in these antigen-experienced B cell populations remain unclear. Here, we show that B cell–intrinsic BAFFR does not play a significant role in the survival or function of GC B cells or in the generation of the somatically mutated MBCs derived from them. Instead, BAFF/BAFFR signaling was required to generate the unmutated, GC-independent MBCs that differentiate directly from activated B cell blasts early in the response. Furthermore, amplification of BAFFR signaling in responding B cells did not affect GCs or the generation of GC-derived MBCs but greatly expanded the GC-independent MBC response. Although BAFF/BAFFR signaling specifically controlled the formation of the GC-independent MBC response, both types of MBCs required input from this pathway for optimal long-term survival.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Eric J. Darrah ◽  
Christopher N. Jondle ◽  
Kaitlin E. Johnson ◽  
Gang Xin ◽  
Philip T. Lange ◽  
...  

ABSTRACTGammaherpesviruses are ubiquitous pathogens that are associated with B cell lymphomas. In the early stages of chronic infection, these viruses infect naive B cells and subsequently usurp the B cell differentiation process through the germinal center response to ensure latent infection of long-lived memory B cells. A unique feature of early gammaherpesvirus chronic infection is a robust differentiation of irrelevant, virus-nonspecific B cells with reactivities against self-antigens and antigens of other species. In contrast, protective, virus-specific humoral responses do not reach peak levels until a much later time. While several host factors are known to either promote or selectively restrict gammaherpesvirus-driven germinal center response, viral mechanisms that contribute to the irrelevant B cell response have not been defined. In this report we show that the expression and the enzymatic activity of the gammaherpesvirus-encoded conserved protein kinase selectively facilitates the irrelevant, but not virus-specific, B cell responses. Further, we show that lack of interleukin-1 (IL-1) receptor attenuates gammaherpesvirus-driven B cell differentiation and viral reactivation. Because germinal center B cells are thought to be the target of malignant transformation during gammaherpesvirus-driven lymphomagenesis, identification of host and viral factors that promote germinal center responses during gammaherpesvirus infection may offer an insight into the mechanism of gammaherpesvirus pathogenesis.IMPORTANCEGammaherpesviruses are ubiquitous cancer-associated pathogens that usurp the B cell differentiation process to establish life-long latent infection in memory B cells. A unique feature of early gammaherpesvirus infection is the robust increase in differentiation of B cells that are not specific for viral antigens and instead encode antibodies that react with self-antigens and antigens of other species. Viral mechanisms that are involved in driving such irrelevant B cell differentiation are not known. Here, we show that gammaherpesvirus-encoded conserved protein kinase and host IL-1 signaling promote irrelevant B cell responses and gammaherpesvirus-driven germinal center responses, with the latter thought to be the target of viral transformation.


2021 ◽  
Author(s):  
Ida Lindeman ◽  
Justyna Polak ◽  
Shuo-Wang Qiao ◽  
Trygve Holmøy ◽  
Rune A. Høglund ◽  
...  

AbstractClonally related B cells infiltrate the brain, meninges and cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients, but the mechanisms driving the B-cell response and shaping the immunoglobulin repertoires remain unclear. Here, we used single-cell full-length RNA-seq and B-cell receptor reconstruction to simultaneously assess the phenotypes, isotypes, constant region polymorphisms, and the paired heavy- and light-chain repertoires in intrathecal B-lineage cells. We detected extensive clonal connections between the memory B cell and antibody-secreting cell (ASC) compartments and observed clonally related cells of different isotypes, including IgM/IgG1, IgG1/IgA1, IgG1/IgG2, and IgM/IgA1. There was a strong dominance of the G1m1 allotype constant region polymorphisms in ASCs, but not in memory B cells. Tightly linked to the G1m1 allotype, we found a preferential pairing of the IGHV4 gene family with the κ variable (IGKV)1 gene family. These results link IgG constant region polymorphisms to stereotyped B-cell responses in MS, indicating that the intrathecal B-cell response in these patients could be directed against structurally similar epitopes. The data also suggest that the dominance of the G1m1 allotype in ASCs may occur as a result of biased differentiation of intrathecal memory B cells.


2021 ◽  
Vol 6 (58) ◽  
pp. eabi6950 ◽  
Author(s):  
Rishi R. Goel ◽  
Sokratis A. Apostolidis ◽  
Mark M. Painter ◽  
Divij Mathew ◽  
Ajinkya Pattekar ◽  
...  

Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects. SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant. Memory B cells specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naive subjects after the second vaccine dose, though the memory B cell response declined slightly with age. In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose. This robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens. Together, our data demonstrated robust serological and cellular priming by mRNA vaccines and revealed distinct responses based on prior SARS-CoV-2 exposure, whereby COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses. These findings also highlight the utility of defining cellular responses in addition to serologies and may inform SARS-CoV-2 vaccine distribution in a resource-limited setting.


Sign in / Sign up

Export Citation Format

Share Document