scholarly journals The Influence of Body Position on Bioelectrical Impedance Spectroscopy Measurements in Young Children

Author(s):  
Jaz Lyons-Reid ◽  
Leigh C Ward ◽  
Mya-Thway Tint ◽  
Timothy Kenealy ◽  
Keith M Godfrey ◽  
...  

Abstract Bioelectrical impedance techniques are easy to use and portable tools for assessing body composition. While measurements vary according to standing vs supine position in adults, and fasting and bladder voiding have been proposed as additional important influences, these have not been assessed in young children. Therefore, the influence of position, fasting, and voiding on bioimpedance measurements was examined in children. Bioimpedance measurements (ImpediMed SFB7) were made in 50 children (3.5 years). Measurements were made when supine and twice when standing (immediately on standing and after four minutes). Impedance and body composition were compared between positions, and the effect of fasting and voiding was assessed. Impedance varied between positions, but body composition parameters other than fat mass (total body water, intra- and extra-cellular water, fat-free mass) differed by less than 5%. There were no differences according to time of last meal or void. Equations were developed to allow standing measurements of fat mass to be combined with supine measurements. In early childhood, it can be difficult to meet requirements for fasting, voiding, and lying supine prior to measurement. This study provides evidence to enable standing and supine bioimpedance measurements to be combined in cohorts of young children.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaz Lyons-Reid ◽  
Leigh C. Ward ◽  
Mya-Thway Tint ◽  
Timothy Kenealy ◽  
Keith M. Godfrey ◽  
...  

AbstractBioelectrical impedance techniques are easy to use and portable tools for assessing body composition. While measurements vary according to standing vs supine position in adults, and fasting and bladder voiding have been proposed as additional important influences, these have not been assessed in young children. Therefore, the influence of position, fasting, and voiding on bioimpedance measurements was examined in children. Bioimpedance measurements (ImpediMed SFB7) were made in 50 children (3.38 years). Measurements were made when supine and twice when standing (immediately on standing and after four minutes). Impedance and body composition were compared between positions, and the effect of fasting and voiding was assessed. Impedance varied between positions, but body composition parameters other than fat mass (total body water, intra- and extra-cellular water, fat-free mass) differed by less than 5%. There were no differences according to time of last meal or void. Equations were developed to allow standing measurements of fat mass to be combined with supine measurements. In early childhood, it can be difficult to meet requirements for fasting, voiding, and lying supine prior to measurement. This study provides evidence to enable standing and supine bioimpedance measurements to be combined in cohorts of young children.


2006 ◽  
Vol 96 (6) ◽  
pp. 1163-1168 ◽  
Author(s):  
Joanne Hosking ◽  
Brad S. Metcalf ◽  
Alison N. Jeffery ◽  
Linda D. Voss ◽  
Terence J. Wilkin

Foot-to-foot bioelectrical impedance analysis (BIA) is simple and non-invasive, making it particularly suitable for use in children. There is insufficient evidence of the validity of foot-to-foot BIA compared with dual-energy X-ray absorptiometry (DEXA) as the criterion method in healthy young children. Our objective was to assess the validity of foot-to-foot BIA against DEXA in a large cohort of healthy young children. Body composition was measured by foot-to-foot BIA and DEXA in 203 children (mean age 8·9 (sd0·3) years). Bland–Altman and simple linear regression analyses were used to determine agreement between methods. BIA overestimated fat-free mass by a mean of 2·4 % in boys and 5·7 % in girls, while fat mass was underestimated by 6·5 % in boys and 10·3 % in girls. The percentage fat recorded by BIA was, accordingly, also lower than by DEXA (boys 4·8 %; girls 12·8 %). In boys, however, there were correlations between the size of the difference between methods and the size of the measure under consideration such that in smaller boys fat-free mass was underestimated (r − 0·57;P < 0·001) while fat mass and percentage fat were overestimated (r0·74 for fat mass;r0·69 for percentage fat; bothP < 0·001) with the reverse in bigger boys. Mean differences between techniques were greater in the girls than in the boys but in boys only, the direction of the differences was dependent upon the size of the child. Therefore, BIA may be useful for large-scale studies but is not interchangeable with DEXA and should be interpreted with caution in individuals.


Author(s):  
Ava Kerr ◽  
Gary Slater ◽  
Nuala Byrne ◽  
Janet Chaseling

The three-compartment (3-C) model of physique assessment (fat mass, fat-free mass, water) incorporates total body water (TBW) whereas the two-compartment model (2-C) assumes a TBW of 73.72%. Deuterium dilution (D2O) is the reference method for measuring TBW but is expensive and time consuming. Multifrequency bioelectrical impedance spectroscopy (BIS SFB7) estimates TBW instantaneously and claims high precision. Our aim was to compare SFB7 with D2O for estimating TBW in resistance trained males (BMI >25kg/m2). We included TBWBIS estimates in a 3-C model and contrasted this and the 2-C model against the reference 3-C model using TBWD2O. TBW of 29 males (32.4 ± 8.5 years; 183.4 ± 7.2 cm; 92.5 ± 9.9 kg; 27.5 ± 2.6 kg/m2) was measured using SFB7 and D2O. Body density was measured by BODPOD, with body composition calculated using the Siri equation. TBWBIS values were consistent with TBWD2O (SEE = 2.65L; TE = 2.6L) as were %BF values from the 3-C model (BODPOD + TBWBIS) with the 3-C reference model (SEE = 2.20%; TE = 2.20%). For subjects with TBW more than 1% from the assumed 73.72% (n = 16), %BF from the 2-C model differed significantly from the reference 3-C model (Slope 0.6888; Intercept 5.093). The BIS SFB7 measured TBW accurately compared with D2O. The 2C model with an assumed TBW of 73.72% introduces error in the estimation of body composition. We recommend TBW should be measured, either via the traditional D2O method or when resources are limited, with BIS, so that body composition estimates are enhanced. The BIS can be accurately used in 3C equations to better predict TBW and BF% in resistance trained males compared with a 2C model.


2003 ◽  
Vol 94 (6) ◽  
pp. 2368-2374 ◽  
Author(s):  
Marjolein Visser ◽  
Marco Pahor ◽  
Frances Tylavsky ◽  
Stephen B. Kritchevsky ◽  
Jane A. Cauley ◽  
...  

Changing body composition has been suggested as a pathway to explain age-related functional decline. No data are available on the expected changes in body composition as measured by dual-energy X-ray absorptiometry (DXA) in a population-based cohort of older persons. Body composition data at baseline, 1-yr follow-up, and 2-yr follow-up was measured by DXA in 2,040 well-functioning black and white men and women aged 70–79 yr, participants of the Health, Aging, and Body Composition Study. After 2 yr, a small decline in total body mass was observed (men: −0.3%, women: −0.4%). Among men, fat-free mass and appendicular lean soft tissue mass (ALST) decreased by −1.1 and −0.8%, respectively, which was masked by a simultaneous increase in total fat mass (+2.0%). Among women, a decline in fat-free mass was observed after 2 yr only (−0.6%) with no change in ALST and body fat mass. After 2 yr, the decline in ALST was greater in blacks than whites. Change in total body mass was associated with change in ALST ( r = +0.58 to +0.70; P < 0.0001). Among participants who lost total body mass, men lost relatively more ALST than women, and blacks lost relatively more ALST than whites. In conclusion, the mean change in body composition after a 1- to 2-yr follow-up was 1–2% with a high interindividual variability. Loss of ALST was greater in men compared with women, and greater in blacks compared with whites, suggesting that men and blacks may be more prone to muscle loss.


2009 ◽  
Vol 28 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Marja Tengvall ◽  
Lars Ellegård ◽  
Vibeke Malmros ◽  
Niklas Bosaeus ◽  
Lauren Lissner ◽  
...  

2019 ◽  
Vol 4 ◽  
pp. 105 ◽  
Author(s):  
Linda M. O'Keeffe ◽  
Abigail Fraser ◽  
Laura D. Howe

Correlations of body composition with height vary by age and sex during childhood. Standard approaches to accounting for height in measures of body composition (dividing by height (in meters)2) do not take this into account. Using measures of total body mass (TBM), fat mass (FM) and fat free mass (FFM) at ages nine, 11, 13, 15 and 18 years from a longitudinal UK cohort study (ALSPAC), we calculated indices of body composition at each age by dividing measures by height (in meters)2. We then produced age-and sex-specific powers of height using allometric regressions and calculated body composition indices by dividing measures by height raised to these powers. TBM, FM and FFM divided by height2 were correlated with height up-to age 11 in females. In males, TBM and FM divided by height2 were correlated with height up-to age 15 years while FM divided by height2 was correlated with height up-to age 11 years. Indices of body composition using age-and sex-specific powers were not correlated with height at any age. In early life, age-and sex-specific powers of height, rather than height in meters2, should be used to adjust body composition for height when measures of adiposity/mass independent of height are required.


2020 ◽  
Vol 66 (2) ◽  
pp. 180-186
Author(s):  
Joana Rosado ◽  
João P. Duarte ◽  
Paulo Sousa-e-Silva ◽  
Daniela C. Costa ◽  
Diogo V. Martinho ◽  
...  

SUMMARY OBJECTIVE The current study aimed to examine the body composition of adult male ultra-trail runners (UTR) according to their level of participation (regional UTR-R, vs. national UTR-N). METHODS The sample was composed of 44 adult male UTR (aged 36.5±7.2 years; UTR-R: n=25; UTR-N: n=19). Body composition was assessed by air displacement plethysmography, bioelectrical impedance, and dual-energy X-ray absorptiometry. In addition, the Food Frequency Questionnaire (FFQ) was applied. A comparison between the groups was performed using independent samples t-test. RESULTS Significant differences between groups contrasting in the competitive level were found for chronological age (in years; UTR-R: 38.8±8.2 vs. UTR-N: 33.5±4.1); body density (in L.kg-1; UTR-R: 1.062±0.015 vs. UTR-N: 1.074±0.009); and fat mass (in kg; UTR-R: 12.7±6.8 vs. UTR-N: 7.6±2.7). CONCLUSION UTR-N were younger, presented higher values for body density, and had less fat mass, although no significant differences were found for fat-free mass. The current study evidenced the profile of long-distance runners and the need for weight management programs to regulate body composition.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2735
Author(s):  
Kurt Z. Long ◽  
Johanna Beckmann ◽  
Christin Lang ◽  
Harald Seelig ◽  
Siphesihle Nqweniso ◽  
...  

(1) Background: Early childhood malnutrition may result in increased fat mass (FM) among school-aged children in low- and middle-income countries (LMICs). We explored whether South African children with shorter stature have greater overall and abdominal FM compared to normal stature children. (2) Methods: Baseline assessments of body composition and weight were determined among school-aged children enrolled in a randomized controlled trial in Port Elizabeth, South Africa, using bioelectrical impedance analysis. Multiple linear regression models tested associations of children’s height and degree of stunting with FM, fat free mass (FFM), truncal fat mass (TrFM), and truncal fat free mass (TrFFM) overall and by sex. (3) Results: A total of 1287 children (619 girls, 668 boys) were assessed at baseline. Reduced child height was associated with higher FM and lower FFM and TrFFM, but these associations were reversed with increases in height. Girls classified as mildly or moderately/severely stunted had higher FM and TrFM but lower FFM and TrFFM, while no association was found for boys. (4) Conclusions: Our study suggests that efforts to reduce the non-communicable disease burden in LMICs should target growth-impaired children who may have greater overall FM and greater abdominal FM.


Author(s):  
Beatriz Rael ◽  
Nuria Romero-Parra ◽  
Víctor M. Alfaro-Magallanes ◽  
Laura Barba-Moreno ◽  
Rocío Cupeiro ◽  
...  

Purpose: The influence of female sex hormones on body fluid regulation and metabolism homeostasis has been widely studied. However, it remains unclear whether hormone fluctuations throughout the menstrual cycle (MC) and with oral contraceptive (OC) use affect body composition (BC). Thus, the aim of this study was to investigate BC over the MC and OC cycle in well-trained females. Methods: A total of 52 eumenorrheic and 33 monophasic OC-taking well-trained females participated in this study. Several BC variables were measured through bioelectrical impedance analysis 3 times in the eumenorrheic group (early follicular phase, late follicular phase, and midluteal phase) and on 2 occasions in the OC group (withdrawal phase and active pill phase). Results: Mixed linear model tests reported no significant differences in the BC variables (body weight, body mass index, basal metabolism, fat mass, fat-free mass, and total body water) between the MC phases or between the OC phases (P > .05 for all comparisons). Trivial and small effect sizes were found for all BC variables when comparing the MC phases in eumenorrheic females, as well as for the OC cycle phases. Conclusions: According to the results, sex hormone fluctuations throughout the menstrual and OC cycle do not influence BC variables measured by bioelectrical impedance in well-trained females. Therefore, it seems that bioimpedance analysis can be conducted at any moment of the cycle, both for eumenorrheic women and women using OC.


2019 ◽  
Vol 4 (2) ◽  
pp. 23 ◽  
Author(s):  
Antonio ◽  
Kenyon ◽  
Ellerbroek ◽  
Carson ◽  
Burgess ◽  
...  

The purpose of this investigation was to compare two different methods of assessing body composition (i.e., a multi-frequency bioelectrical impedance analysis (MF-BIA) and dual-energy x-ray absorptiometry (DXA)) over a four-week treatment period in exercise-trained men and women. Subjects were instructed to reduce their energy intake while maintaining the same exercise regimen for a period of four weeks. Pre and post assessments for body composition (i.e., fat-free mass, fat mass, percent body fat) were determined via the MF-BIA and DXA. On average, subjects reduced their energy intake by ~18 percent. The MF-BIA underestimated fat mass and percentage body fat and overestimated fat-free mass in comparison to the DXA. However, when assessing the change in fat mass, fat-free mass or percent body fat, there were no statistically significant differences between the MF-BIA vs. DXA. Overall, the change in percent body fat using the DXA vs. the MF-BIA was −1.3 ± 0.9 and −1.4 ± 1.8, respectively. Our data suggest that when tracking body composition over a period of four weeks, the MF-BIA may be a viable alternative to the DXA in exercise-trained men and women.


Sign in / Sign up

Export Citation Format

Share Document