scholarly journals Delineation of Sedimentary Basin Structure beneath the Banyumas Basin, Central Java, Indonesia, Using Ambient Seismic Noise Tomography

Author(s):  
Ahmad Setiawan ◽  
Zulfakriza Zulfakriza ◽  
Andri Dian Nugraha ◽  
Shindy Rosalia ◽  
Awali Priyono ◽  
...  

Abstract Subsurface images of an area with a thick volcanic layer generally can not be well-imaged with conventional seismic exploration (seismic reflection) due to seismic wave scattering. Another method is needed to obtain an accurate subsurface image in a thick volcanic layer area. In this study, we applied Ambient Noise Tomography (ANT) to image the shear-wave velocity (Vs) structure in the Banyumas Basin, Central Java, Indonesia, which has relatively thick volcanic layers. We aimed to delineate the sediment deposits and the sedimentary thickness in this area. Although this method has limited application for subsurface imaging with a thick volcanic layer area, the application of cross-correlations from ambient noise has been widely applied in numerous locations to obtain greater understanding of subsurface structures. In this study, more than 1,000 pairs of vertical component cross-correlations were used to estimate the Green's Function of the Rayleigh wave. The Multiple Filter Technique (MFT) was used as a Time-Frequency Analysis and 1,291 dispersion curves were obtained. The Neighbourhood Algorithm (NA) was utilized to inverse the dispersion curves at 121 grid points which were used to obtain a vertical depth profile of 1D Vs. The Vs map results show that the low Vs tend to trend in a northwest-southeast direction associated with two areas: the Majenang low, and the Citanduy low. The presence of low Vs values corresponds with Middle Miocene–Pliocene sedimentary rocks. Meanwhile, the high Vs value in this area might correspond with Oligocene–Early Miocene volcanic products and Eocene sediment. Our study was also able to reveal the thickness of sedimentary rocks in the the Banyumas sedimentary basin, which is believed to have hydrocarbon potential.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ahmad Setiawan ◽  
Zulfakriza Zulfakriza ◽  
Andri Dian Nugraha ◽  
Shindy Rosalia ◽  
Awali Priyono ◽  
...  

AbstractSubsurface images of an area with a thick volcanic layer generally cannot be well-imaged with conventional seismic exploration (seismic reflection) due to seismic wave scattering. Another method is needed to obtain an accurate subsurface image in a thick volcanic layer area. In this study, we applied ambient noise tomography (ANT) to image the shear-wave velocity (Vs) structure in the Banyumas Basin, Central Java, Indonesia, which has relatively thick volcanic layers. We aimed to delineate the sediment deposits and the sedimentary thickness in this area through the utilization of ambient seismic noise. The application of cross-correlations from ambient seismic noise has been widely applied in numerous locations to obtain a greater understanding of subsurface structures. In this study, more than 1000 pairs of vertical component cross-correlations were used to estimate the Green's Function of the Rayleigh wave. The Neighbourhood Algorithm (NA) was utilized to invert the dispersion curves at 121 grid points which were used to obtain a vertical depth profile of 1D Vs. The Vs map results show that the low Vs tend to trend in a northwest–southeast direction associated with two areas: the Majenang low, and the Citanduy low. The presence of low Vs values corresponds with Middle Miocene–Pliocene sedimentary rocks. Meanwhile, the high Vs values in this area might correspond with Oligocene–Early Miocene volcanic products and Eocene sediment. Our study was also able to reveal the thickness of sedimentary rocks in the Banyumas sedimentary basin, which is believed to have hydrocarbon potential.


2016 ◽  
Vol 4 (3) ◽  
pp. SJ17-SJ27 ◽  
Author(s):  
Pascal Edme ◽  
Shihao Yuan

A novel acquisition and processing technique is described to derive surface-wave dispersion curves from seismic ambient noise. We have determined that the use of spatial gradients of the wavefield provides new opportunities for high-resolution near-surface characterization with minimal field effort. In contrast to conventional active source data analysis that provides spatially smoothed results from large and dense arrays of receivers, our method provides local phase velocity information from ambient noise using only three closely spaced geophones. A time-frequency domain polarization-based analysis scheme is implemented to (1) detect the useful part of the data satisfying fundamental gradiometry assumptions, (2) estimate the noise source azimuthal distribution, and finally, (3) derive the desired local dispersion curves. The robustness and effectiveness of the developed method is demonstrated using the synthetic and real data, with a comparison to results from active source measurements.


2020 ◽  
Author(s):  
Iván Cabrera ◽  
Jean Soubestre ◽  
Luca D'Auria ◽  
Edoardo Del Pezzo ◽  
José Barrancos ◽  
...  

<p>Tenerife and La Palma are active volcanic islands belonging to the Canarian archipelago. The island of La Palma is the most occidental and volcanically active island of the archipelago. The youngest volcanic rocks are located in the Cumbre Vieja volcanic complex, a fast-growing North-South ridge in the southern half part of the island. On the other hand, the central part of Tenerife island hosts the Teide composite volcano, the third tallest volcano on Earth measured from the ocean floor. The volcanic system of the island extends along three radial dorsals, where most of the historical eruptions occurred. Those two volcanic islands have potential geothermal resources that could be exploited to increase the percentage of renewable energy in the Canary Islands.</p><p> </p><p>The main objective of this work is the use of Ambient Noise Tomography (ANT) to determine high-resolution seismic velocity and attenuation models of the first few kilometres of the crust, in order to detect anomalies potentially related to active geothermal reservoirs. In the case of Tenerife, previous tomographic studies were performed on the island using active seismic data. They allowed to image the structure of the first 8 km depth. However, for the purpose of geothermal exploration, a higher spatial resolution is needed for the first few kilometres and the determination of the shear wave velocity has a particular importance when searching for fluid reservoirs. In the case of La Palma, no seismic tomography was performed yet.</p><p> </p><p>To realize the ANT, we deployed temporary broadband seismic networks in the two islands. In total, we deployed seismic stations on 41 measurements points in Tenerife and 23 points in La Palma. The campaigns lasted at least 1 month, using jointly the permanent seismic network Red Sísmica Canaria (C7) operated by INVOLCAN. After performing standard data processing to retrieve Green’s functions from cross-correlations of ambient noise, we retrieved the dispersion curves using the FTAN (Frequency Time ANalysis) technique. The inversion of dispersion curves to obtain group velocity maps was performed using a novel non-linear multiscale tomographic approach. The forward modelling of surface waves traveltimes was implemented using a shortest-path algorithm which takes the topography into account. The method consists of progressive non-linear inversion steps at increasing resolution. This technique allows retrieving 2D group velocity models in presence of strong velocity contrasts with up to 100% of relative variation.</p><p> </p><p>In parallel with velocity model, we retrieved maps of seismic attenuation (i.e. quality factor Q) retrieved from the coda envelope decay of noise cross-correlations (Q-coda). For each source-receiver pair, a Q-coda value was calculated, and mapped to the target area by using 2D empirical sensitivity kernels for diffusion (Del Pezzo and Ibañez, 2019). We compared 2D velocity and attenuation images at different dominant periods, evidencing structural features for Tenerife and La Palma islands which seem to be relevant for the purpose of geothermal exploration.</p>


Author(s):  
Hamzeh Sadeghisorkhani ◽  
Ólafur Gudmundsson ◽  
Ka Lok Li ◽  
Ari Tryggvason ◽  
Björn Lund ◽  
...  

Summary Rayleigh-wave phase-velocity tomography of southern Sweden is presented using ambient seismic noise at 36 stations (630 station pairs) of the Swedish National Seismic Network (SNSN). We analyze one year (2012) of continuous recordings to get the first crustal image based on the ambient-noise method in the area. Time-domain cross-correlations of the vertical component between the stations are computed. Phase-velocity dispersion curves are measured in the frequency domain by matching zero crossings of the real spectra of cross-correlations to the zero crossings of the zeroth-order Bessel function of the first kind. We analyze the effect of uneven source distributions on the phase-velocity dispersion curves and correct for the estimated velocity bias before tomography. To estimate the azimuthal source distribution to determine the bias, we perform inversions of amplitudes of cross-correlation envelopes in a number of period ranges. Then, we invert the measured and bias-corrected dispersion curves for phase-velocity maps at periods between 3 and 30 s. In addition, we investigate the effects of phase-velocity bias corrections on the inverted tomographic maps. The difference between bias corrected and uncorrected phase-velocity maps is small ($< 1.2 \%$), but the correction significantly reduces the residual data variance at long periods where the bias is biggest. To obtain a shear velocity model, we invert for a one-dimensional velocity profile at each geographical node. The results show some correlation with surface geology, regional seismicity and gravity anomalies in the upper crust. Below the upper crust, the results agree well with results from other seismological methods.


2020 ◽  
Author(s):  
Glenn Jones ◽  
Bernd Kulessa ◽  
Ana Ferreira ◽  
Martin Schimmel ◽  
Andrea Berbellini ◽  
...  

<p>Basal slip is an important mechanism by which glaciers and ice-sheets flow, and is a major source of uncertainty in simulations of ice-mass loss and sea level rise from the Greenland Ice Sheet (GrIS). Sub-ice geology is a dominant control on ice flow velocity with fast flow often coinciding with the presence of deformable subglacial till eroded from underlying sedimentary rocks. The subglacial geology of Greenland has received relatively little attention thus far and its control on ice flow is poorly understood. Seismic studies of the crust beneath the GrIS have been limited due to a lack of seismic stations and the reliance on earthquake event data. However, in the past decade, there has been a rapid increase in the number of both permanent and temporary seismic stations deployed in Greenland as well developments in ambient noise methods, allowing for improved spatial resolution of crustal geology.</p><p> </p><p>Ellipticity measurements, the ratio of the horizontal to vertical component of a Rayleigh wave, have been shown to be particularly sensitive to the geological structure directly beneath the station. Ambient noise H/V measurements have been used for decades in geotechnical and civil engineering for site characterisation, making them a well-suited technique to determine the subglacial geology of the GrIS. Using all available broadband stations deployed on Greenland from 2012 to 2018 we extract Rayleigh wave ellipticity measurement from ambient noise data using the degree-of-polarization (DOP) method where meaningful signals are defined as a waveform with an arbitrary polarization which remains stable for a given time window. We invert these ellipticity measurements in the period range of 4 – 9 s to generate <em>V</em><sub><em>s </em></sub>profiles of the first 5 km beneath each station. Our inversions indicate that: (1) off-ice stations along the margins of the GrIS produce a good agreement with the litho1.0 model to within error and (2) an additional subglacial layer 1.0 - 2.0km thick with a <em>V</em><sub><em>s</em></sub> < 3.0km is necessary to match the data recorded at several of the on-ice stations. We attribute these observations to the widespread presence of sedimentary rocks beneath the GrIS, potentially capable of sustaining extensive subglacial till layers that can support enhanced basal slip.</p>


2019 ◽  
Vol 220 (1) ◽  
pp. 370-383 ◽  
Author(s):  
Thomas Planès ◽  
Anne Obermann ◽  
Verónica Antunes ◽  
Matteo Lupi

SUMMARYThe Greater Geneva Basin is one of the key targets for geothermal exploration in Switzerland. Until recently, information about the subsurface structure of this region was mostly composed of well-logs, seismic reflection lines, and gravity measurements. As part of the current effort to further reduce subsurface uncertainty, and to test passive seismic methods for exploration purposes, we performed an ambient-noise tomography of the Greater Geneva Basin. We used ∼1.5 yr of continuous data collected on a temporary seismic network composed of 28 broad-band stations deployed within and around the basin. From the vertical component of the continuous noise recordings, we computed cross-correlation functions and retrieved Rayleigh-wave group-velocity dispersion curves. We then inverted the dispersion curves to obtain 2-D group-velocity maps and proceeded to a subsequent inversion step to retrieve a large-scale 3-D shear-wave velocity model of the basin. We discuss the retrieved features of the basin in the light of local geology, previously acquired geophysical data sets, and ongoing geothermal exploration. The Greater Geneva Basin is an ideal natural laboratory to test innovative geothermal exploration methods because of the substantial geophysical data sets available for comparison. While we point out the limits of ambient-noise exploration with sparse networks and current methodology, we also discuss possible ways to develop ambient-noise tomography as an affordable and efficient subsurface exploration method.


Author(s):  
Morimasa Murase ◽  
Koichiro Kawashima

Multimode’s Lamb waves in aluminum plates with various defects were excited by a Q-switched Nd:YAG laser. The Lamb waves past through the defects were received a laser interferometer. The received signals of the Lamb waves are processed by the wavelet transformation. The wavelet transformation is generally shown on the time-frequency domain. By dividing a propagation distance by the time, the group velocities are identified. In this way, group velocity dispersion maps of multimode’s Lamb waves are constructed with the received temporal signals. By changing the shape of the mother wavelet, Gabor function, we can identify the dispersion curves of the higher mode Lamb waves. The group velocity dispersion maps of a intact specimen agree well on theoretical dispersion curves of S0, A0, S1, A1, S2, A2, and A3 modes. The difference between the dispersion maps of the intact specimen and that with defects clearly visualizes the existence of defects. This non-contact method is effective for inspecting various defects in thin plate structures.


2020 ◽  
Vol 91 (4) ◽  
pp. 2234-2246
Author(s):  
Hang Li ◽  
Jianqiao Xu ◽  
Xiaodong Chen ◽  
Heping Sun ◽  
Miaomiao Zhang ◽  
...  

Abstract Inversion of internal structure of the Earth using surface waves and free oscillations is a hot topic in seismological research nowadays. With the ambient noise data on seismically quiet days sourced from the gravity tidal observations of seven global distributed superconducting gravimeters (SGs) and the seismic observations for validation from three collocated STS-1 seismometers, long-period surface waves and background free oscillations are successfully extracted by the phase autocorrelation (PAC) method, respectively. Group-velocity dispersion curves at the frequency band of 2–7.5 mHz are extracted and compared with the theoretical values calculated with the preliminary reference Earth model. The comparison shows that the best observed values differ about ±2% from the corresponding theoretical results, and the extracted group velocities of the best SG are consistent with the result of the collocated STS-1 seismometer. The results indicate that reliable group-velocity dispersion curves can be measured with the ambient noise data from SGs. Furthermore, the fundamental frequency spherical free oscillations of 2–7 mHz are also clearly extracted using the same ambient noise data. The results in this study show that the SG, besides the seismometer, is proved to be another kind of instrument that can be used to observe long-period surface waves and free oscillations on seismically quiet days with a high degree of precision using the PAC method. It is worth mentioning that the PAC method is first and successfully introduced to analyze SG observations in our study.


2019 ◽  
Vol 2 (2) ◽  
pp. 61-66
Author(s):  
Ahmad Fauzi Pohan ◽  
Rusnoviandi Rusnoviandi

Aktivitas gunung lumpur Bledug Kuwu di Jawa  Tengah merupakan fenomena yang menarik dikaji menggunakan pemodelan fisis. Tujuan penelitian ini adalah mengetahui parameter dari medium gunung lumpur Bledug Kuwu. Adapun pemodelan fisis yang dilakukan dengan menggunakan media fisis akuarium berukuran 59 × 59 × 37,3 cm yang diisi material dari lumpur Bledug Kuwu. Sumber letusan dihasilkan dari tekanan kompresor yang dapat diatur kedalaman (10.5, 13, dan 15.5 cm) dan sudut (30o, 45o dan 60o) sumbernya. Sensor yang digunakan geophone komponen vertikal sebanyak 3 buah dengan durasi perekaman selama 5 dan 2,5 detik. Data diambil dengan frekuensi sampel 2 dan 4 kHz untuk masing-masing durasi perekaman. Konfigurasi sumber dan geophone dibuat sesuai dengan pemodelan fisisnya. Pengukuran desnsitas lumpur menunjukkan angka sebesar 1200 kg/m3. Berdasarkan hasil analisis seismogram model fisis diperoleh kecepatan perambatan gelombang-P pada medium lumpur Bledug Kuwu adalah sebesar 48,74 m/s,dan gelombang-S sebesar 28,14 m/s dengan frekuensi dominan antara 20 sampai 25 Hz.   Bledug Kuwu mud volcano activity in Central Java is an interesting phenomenon to be studied using both physical  modeling. The objective of this study was to determine the physical parameters of the medium of Bledug Kuwu. The Physical model was an aquarium with a dimension of 59 × 59 × 37.3 cm filled with Bledug Kuwu’s mud. The eruption source is generated by a compressor pressure that can be controled both the depth(10.5, 13, and 15.5 cm) and the angel of the source (30o, 45o and 60o). The resulting seismic signals were recorded by using 3 vertical component geophones for 10 and 5 seconds durations at a frequency of 2 and 4 kHz respectivel, mud density 1200 kg/m3 . The physical modeling shows that the P-wave velocity of the Bledug Kuwu’s medium is 48.7 m/s, S-wave velocity of Bledug Kuwu’s is 28,14 m/s  with a dominant frequency of 20 to 25 Hz.


2020 ◽  
Vol 63 (Vol 63 (2020)) ◽  
Author(s):  
Radia Kherchouche ◽  
Merzouk Ouyed ◽  
Abdelkrim Aoudia ◽  
Billel Mellouk ◽  
Ahmed Saadi

•  In this work, we study the crust and the uppermost mantle structure beneath the Sicily Channel, by applying the ambient noise and earthquake tomography method. After computing cross-correlation of the continuous ambient noise signals and processing the earthquake data, we extracted 104 group velocity and 68 phase velocity dispersion curves corresponding to the fundamental mode of the Rayleigh waves. We computed the average velocity of those dispersion curves to obtain tomographic maps at periods ranging from 5 s to 40 s for the group velocities and from 10 s to 70 for the phase velocities. We inverted group and phase speeds to get the shear-wave velocity structure from the surface down to 100 km depth with a lateral resolution of about 200 km. The resulted velocity models reveal a thin crust with thickness value of 15 km beneath the southern part of the Tyrrhenian basin and a thickness value of 20 km beneath Mount Etna. The obtained thickness values are well correlated with the reported extension of the Tyrrhenian lithosphere due to the past earthquake tomography subduction and rollback of the Ionian slab beneath the Calabrian Arc. The crustal thickness increases and reaches values between 28 and 30 km beneath the Tunisian coasts and Sicily Channel. The S-wave models reveal also the presence of high velocity body beneath the island of Sicily. This finding can be interpreted as the presence of the Ionian slab subducting beneath the Calabrian Arc. Another high velocity body is observed beneath the southern part of the Tyrrhenian basin, it might be interpreted as the presence of fragments of the African continental lithosphere beneath the  Tyrrhenian basin.


Sign in / Sign up

Export Citation Format

Share Document