scholarly journals Study on Hole Making Process of Thick-section Carbon Fiber Reinforced Plastics

Author(s):  
Jianping Li ◽  
Anyuan Jiao ◽  
Xiaomei Chen

Abstract In this paper, the mechanism of helical milling was analyzed at first. Then, the orthogonal experiments on the 24mm thick carbon fiber reinforced composite material (CFRP) that affect the quality of hole making, such as spindle speed, feed per tooth, and number of tool’s blades were conducted. The influence of process parameters on the quality of hole making was analyzed. Finally, the range analysis method was used to obtain the best hole-making parameters: spindle speed is 4500rpm, feed per tooth is 0.02mm/z, the number of tool’s blades is 2. Based on the obtained optimal parameters, the step-by-step hole making of thick-section CFRP with variable parameters was studied, and two sets of parameters were designed. Through the measurement of the hole morphology, roughness, axial force and aperture deviation after the experiment, it is concluded that hole making process with variable parameters can meet the technical requirements of thick-section CFRP.

2015 ◽  
Vol 105 (07-08) ◽  
pp. 501-507
Author(s):  
L. Heberger ◽  
S. Nissle ◽  
M. Gurka ◽  
B. Kirsch ◽  
J. C. Aurich

Beim Bohren von kohlefaserverstärktem Kunststoff treten verstärkt Schädigungen wie Delaminationen und Faserüberstände auf. Mit dem Ziel die Bohrlochqualität zu verbessern, wurde der Einfluss der Werkstückeinspannung hinsichtlich Einspanngeometrie, -kraft und -material untersucht. Zusätzlich zur konventionellen optischen Delaminationsmessung wurde die äußere und die innere Delamination mittels Mikrocomputertomografie analysiert. Durch eine Optimierung der Einspannung konnte die Bohrlochqualität gesteigert werden.   When drilling carbon fiber reinforced polymers damages like delamination and fiber protrusion appear. Aiming to improve the drill hole quality, the influence of the fastening device with respect to fastening geometry, force and material is analyzed. In addition to the conventional optical delamination measurement, the outer and inner delamination is investigated by micro computer tomography. The optimization of the fastening device leads to a higher drill hole quality.


Author(s):  
Palamandadige K. S. C. Fernando ◽  
Meng (Peter) Zhang ◽  
Zhijian Pei ◽  
Weilong Cong

Aerospace, automotive and sporting goods manufacturing industries have more interest on carbon fiber reinforced plastics due to its superior properties, such as lower density than aluminum; higher strength than high-strength metals; higher stiffness than titanium etc. Rotary ultrasonic machining is a hybrid machining process that combines the material removal mechanisms of diamond abrasive grinding and ultrasonic machining. Hole-making is the most common machining operation done on carbon fiber reinforced plastics, where delamination is a major issue. Delamination reduces structural integrity and increases assembly tolerance, which leads to rejection of a part or a component. Comparatively, rotary ultrasonic machining has been successfully applied to hole-making in carbon fiber reinforced plastics. As reported in the literature, rotary ultrasonic machining is superior to twist drilling of carbon fiber reinforced plastics in six aspects: cutting force, torque, surface roughness, delamination, tool life, and material removal rate. This paper investigates the effects of tool end angle on delamination in rotary ultrasonic machining of carbon fiber reinforced plastics. Several investigators have cited thrust force as a major cause for delamination. Eventhogh, it is found on this investigation, tool end angle has more significant influence on the delamination in rotary ultrasonic machining of carbon fiber reinforced plastics comparing to cutting force and torque.


2012 ◽  
Vol 576 ◽  
pp. 64-67 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Z. Mohid ◽  
K.C. Mat ◽  
M.F.M. Jamil ◽  
R. Koyasu ◽  
...  

This paper presents an alternative way of producing a hole by using a helical milling concept on a carbon fiber reinforced polymer (CFRP). Delamination is a major problem associated with making a hole by drilling on the CFRP. This study focused on helical milling technique using a vertical machining center in order to produce a hole. Various levels of cutting parameter such as cutting speed, feed rate and depth of cut have been chosen to observe the effect of trust force, delamination and surface roughness. The result will be used to determine on which cutting parameters give the best hole quality that will achieved by this new approached.


2016 ◽  
Vol 6 ◽  
pp. 140-147 ◽  
Author(s):  
Lukas Heberger ◽  
Benjamin Kirsch ◽  
Tobias Donhauser ◽  
Sebastian Nissle ◽  
Martin Gurka ◽  
...  

2014 ◽  
Vol 697 ◽  
pp. 62-66
Author(s):  
Hong Fei Wang ◽  
Hua Zhou Li ◽  
Long Sheng Lu ◽  
Ying Xi Xie ◽  
Yu Xiao

Due to its excellent performance, carbon fiber-reinforced plastics (CFRP) have been widely applied in industrial applications. The phenomenon of delamination can readily occur when drilling CFRP composites, which affects the quality of drilling holes. To effectively control the generation of processing defects, this paper focused on the analysis of the thrust force and the delamination factor. The delamination analysis was performed using graphs of the spindle speed, feed rate and drill diameter as independent parameters. The results suggest that there was a positive correlation between the delamination factor Fd and the thrust force Fz. The delamination factor decreases with increases in the spindle speed and increases with increases in the feed rate or with increases in the drill diameter. Based on the experimental data, this paper established a formula model of the delamination factor Fd, which would promote the further study of drilling CFRP composites.


Sign in / Sign up

Export Citation Format

Share Document