scholarly journals Establishment of an immune-related gene pairs model to predict colon adenocarcinoma prognosis

2020 ◽  
Author(s):  
Jihang Luo ◽  
Puyu Liu ◽  
Leibo Wang ◽  
Yi Huang ◽  
Yuanyan Wang ◽  
...  

Abstract Background Colon cancer is the most common type of gastrointestinal cancer and has high morbidity and mortality. Colon adenocarcinoma(COAD) is the main pathological type of colon cancer. There is a lot of evidence describing the correlation between the prognosis of COAD and the immune system. The objective of the current study was the development of a robust prognostic immune-related gene pairs (IRGPs) model for estimating overall survival of COAD. Methods The gene expression profiles and clinical information of patients with colon adenocarcinoma come from TCGA and GEO databases and are divided into training and validation cohorts. Immune genes were selected which show significantly association with prognosis. Results Among 1647 immune genes, a 17 IRGPs model was built which was significantly associated with OS in the training cohort. In the training and validation data set, the IRGPs model divided patients into high-risk groups and low-risk groups, and the prognosis of the high-risk group was significantly worse( P <0.001). Univariate and multivariate Cox proportional hazard analysis confirmed the feasibility of this model. Functional analysis confirmed that multiple tumor progression and stem cell growth-related pathways in high-risk groups were up-regulated. T cells regulatory and Macrophage M0 were significantly highly expressed in the high-risk group. Conclusion We successfully constructed an IRGPs model that can predict the prognosis of COAD, which provides new insights into the treatment strategy of COAD.

2020 ◽  
Author(s):  
Jihang Luo ◽  
Puyu Liu ◽  
Leibo Wang ◽  
Yi Huang ◽  
Yuanyan Wang ◽  
...  

Abstract Background. Colon cancer is the most common type of gastrointestinal cancer and has high morbidity and mortality. Colon adenocarcinoma(COAD) is the main pathological type of colon cancer. There is a lot of evidence describing the correlation between the prognosis of COAD and the immune system. The objective of the current study was the development of a robust prognostic immune-related gene pairs (IRGPs) model for estimating overall survival of COAD. Methods. The gene expression profiles and clinical information of patients with colon adenocarcinoma come from TCGA and GEO databases and are divided into training and validation cohorts. Immune genes were selected which show significantly association with prognosis. Results. Among 1647 immune genes, a 17 IRGPs model was built which was significantly associated with OS in the training cohort. In the training and validation data set, the IRGPs model divided patients into high-risk groups and low-risk groups, and the prognosis of the high-risk group was significantly worse(P<0.001). Univariate and multivariate Cox proportional hazard analysis confirmed the feasibility of this model. Functional analysis confirmed that multiple tumor progression and stem cell growth-related pathways in high-risk groups were up-regulated. T cells regulatory and Macrophage M0 were significantly highly expressed in the high-risk group. Conclusion. We successfully constructed an IRGPs model that can predict the prognosis of COAD, which provides new insights into the treatment strategy of COAD.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jihang Luo ◽  
Puyu Liu ◽  
Leibo Wang ◽  
Yi Huang ◽  
Yuanyan Wang ◽  
...  

Abstract Background Colon cancer is the most common type of gastrointestinal cancer and has high morbidity and mortality. Colon adenocarcinoma (COAD) is the main pathological type of colon cancer, and much evidence has supported the correlation between the prognosis of COAD and the immune system. The current study aimed to develop a robust prognostic immune-related gene pair (IRGP) model to estimate the overall survival of patients with COAD. Methods The gene expression profiles and clinical information of patients with colon adenocarcinoma were obtained from the TCGA and GEO databases and were divided into training and validation cohorts. Immune genes were selected that showed a significant association with prognosis. Results Among 1647 immune genes, a model with 17 IRGPs was built that was significantly associated with OS in the training cohort. In the training and validation datasets, the IRGP model divided patients into the high-risk group and low-risk group, and the prognosis of the high-risk group was significantly worse (P<0.001). Univariate and multivariate Cox proportional hazard analyses confirmed the feasibility of this model. Functional analysis confirmed that multiple tumor progression and stem cell growth-related pathways were upregulated in the high-risk groups. Regulatory T cells and macrophages M0 were significantly highly expressed in the high-risk group. Conclusion We successfully constructed an IRGP model that can predict the prognosis of COAD, providing new insights into the treatment strategy of COAD.


2020 ◽  
Author(s):  
Jihang Luo ◽  
Puyu Liu ◽  
Leibo Wang ◽  
Yi Huang ◽  
Yuanyan Wang ◽  
...  

Abstract Background. Colon cancer is the most common type of gastrointestinal cancer and has high morbidity and mortality. Colon adenocarcinoma (COAD) is the main pathological type of colon cancer, and much evidence has supported the correlation between the prognosis of COAD and the immune system. The current study aimed to develop a robust prognostic immune-related gene pair (IRGP) model to estimate the overall survival of patients with COAD. Methods. The gene expression profiles and clinical information of patients with colon adenocarcinoma were obtained from the TCGA and GEO databases and were divided into training and validation cohorts. Immune genes were selected that showed a significant association with prognosis. Results. Among 1,647 immune genes, a model with 17 IRGPs was built that was significantly associated with OS in the training cohort. In the training and validation datasets, the IRGP model divided patients into the high-risk group and low-risk group, and the prognosis of the high-risk group was significantly worse (P<0.001). Univariate and multivariate Cox proportional hazard analyses confirmed the feasibility of this model. Functional analysis confirmed that multiple tumor progression and stem cell growth-related pathways were upregulated in the high-risk groups. Regulatory T cells and macrophages M0 were significantly highly expressed in the high-risk group. Conclusion. We successfully constructed an IRGP model that can predict the prognosis of COAD, providing new insights into the treatment strategy of COAD.


2021 ◽  
Author(s):  
Ding Pan ◽  
Qi-Feng Ou ◽  
Pan-Feng Wu ◽  
Fang Yu ◽  
Ju-Yu Tang

Abstract Background:The incidence rate and mortality rate of melanoma have been increasing in recent decades. Increasing evidence has depicted the correlation between melanoma prognosis and immune signature. Therefore, the aim of this study is to develop a robust prognostic immune-related gene pairs (IRGPs) signature for estimating overall survival (OS) of melanoma.Methods:Gene expression profiling and clinical information of melanoma patients were derived from two public data sets, divided into training and validation cohorts. Immune genes significantly associated with prognosis were selected. Results:Among 1,646 immune genes, a 25 IRGPs signature was built which was significantly associated with OS in the training cohort (P=1.80×10−22; hazard ratio [HR] =9.50 [6.04, 14.93]). In the validation datasets, the IRGPs signature significantly divided patients into high- vs low- risk groups considering their prognosis (P=2.47×10−4; HR =2.99 [1.66, 5.38]) and was prognostic in multivariate analysis. Functional analysis showed that several biological processes, including keratinization and pigment phenotype-related pathways, enriched in the high-risk group. Macrophages M0, NK cells resting and T cells gamma delta were significantly higher in the high-risk group compared with the low-risk group. Conclusions:We successfully constructed a robust IRGPs signature with prognostic values for melanoma, providing new insights into post-operational treatment strategies.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15565-e15565
Author(s):  
Qiqi Zhu ◽  
Du Cai ◽  
Wei Wang ◽  
Min-Er Zhong ◽  
Dejun Fan ◽  
...  

e15565 Background: Few robust predictive biomarkers have been applied in clinical practice due to the heterogeneity of metastatic colorectal cancer (mCRC) . Using the gene pair method, the absolute expression value of genes can be converted into the relative order of genes, which can minimize the influence of the sequencing platform difference and batch effects, and improve the robustness of the model. The main objective of this study was to establish an immune-related gene pairs signature (IRGPs) and evaluate the impact of the IRGPs in predicting the prognosis in mCRC. Methods: A total of 205 mCRC patients containing overall survival (OS) information from the training cohort ( n = 119) and validation cohort ( n = 86) were enrolled in this study. LASSO algorithm was used to select prognosis related gene pairs. Univariate and multivariate analyses were used to validate the prognostic value of the IRGPs. Gene sets enrichment analysis (GSEA) and immune infiltration analysis were used to explore the underlying biological mechanism. Results: An IRGPs signature containing 22 gene pairs was constructed, which could significantly separate patients of the training cohort ( n = 119) and validation cohort ( n = 86) into the low-risk and high-risk group with different outcomes. Multivariate analysis with clinical factors confirmed the independent prognostic value of IRGPs that higher IRGPs was associated with worse prognosis (training cohort: hazard ratio (HR) = 10.54[4.99-22.32], P < 0.001; validation cohort: HR = 3.53[1.24-10.08], P = 0.012). GSEA showed that several metastasis and immune-related pathway including angiogenesis, TGF-β-signaling, epithelial-mesenchymal transition and inflammatory response were enriched in the high-risk group. Through further analysis of the immune factors, we found that the proportions of CD4+ memory T cell, regulatory T cell, and Myeloid dendritic cell were significantly higher in the low-risk group, while the infiltrations of the Macrophage (M0) and Neutrophil were significantly higher in the high-risk group. Conclusions: The IRGPs signature could predict the prognosis of mCRC patients. Further prospective validations are needed to confirm the clinical utility of IRGPs in the treatment decision.


Author(s):  
Xianghong Zhou ◽  
Shi Qiu ◽  
Di Jin ◽  
Kun Jin ◽  
Xiaonan Zheng ◽  
...  

Abstract Background: Papillary renal carcinoma (PRCC) is one of the important subtypes of kidney cancer, with a high degree of heterogeneity. At present, there is still a lack of robust and accurate biomarkers for the diagnosis, prognosis and treatment selection of PRCC. Considering the important role of tumor immunity in PRCC, we aim to construct a signature based on immune-related gene pairs (IRGPs) to estimate the prognostic of patients with PRCC.Methods: We obtained gene expression profiling and clinical information of patients with PRCC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), which were divided into discovery and validation cohorts, respectively. The immune-related genes in the samples were used to construct gene pairs, and the immune-related genes pairs (IRGPs) with robust impact for overall survival (OS) were screened out to construct the signature by univariate analysis, multivariate Cox analysis, and least absolute shrinkage and selection operator (Lasso) analysis. Then we verified the prognostic role of the signature, and assessed the relationship between this signature with tumor immune infiltration and functional pathways.Results: A total of 315 patients were included in our study, and divided to discovery (n=287) and validation (n=28) cohorts. Finally, we selected 14 IRGPs with a panel of 22 unique genes to construct the prognostic signature. According to the signature, we stratified patients into high-risk group and low-risk group. In both discovery and validation cohorts, the results of Kaplan-Meier analysis showed that there were significant differences in OS between the two groups (p<0.001). Combined with multiple clinical pathological factors, the results of multivariate analyses confirmed that this signature was an independent predictor of OS (HR, 3.548; 95%CI, 2.096−6.006; p<0.001). The results of immune infiltration analysis demonstrated that the abundance of multiple tumor-infiltration lymphocytes such as CD8+ T cells, Tregs, and T follicular cell helper were significantly higher in the high-risk group. Functional analysis showed that multiple immune-related signaling pathways were enriched in the high-risk group.Conclusions: We successfully established an individualized prognostic immune-related gene pairs signature, which can accurately and independently predict the OS of patients with PRCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Nijia Zhang ◽  
Ming Ge ◽  
Tao Jiang ◽  
Xiaoxia Peng ◽  
Hailang Sun ◽  
...  

PurposeGlioblastoma is one of the most aggressive nervous system neoplasms. Immunotherapy represents a hot spot and has not been included in standard treatments of glioblastoma. So in this study, we aim to filtrate an immune-related gene pairs (IRGPs) signature for predicting survival and immune heterogeneity.MethodsWe used gene expression profiles and clinical information of glioblastoma patients in the TCGA and CGGA datasets, dividing into discovery and validation cohorts. IRGPs significantly correlative with prognosis were selected to conduct an IRGPs signature. Low and high risk groups were separated by this IRGPs signature. Univariate and multivariate cox analysis were adopted to check whether risk can be a independent prognostic factor. Immune heterogeneity between different risk groups was analyzed via immune infiltration and gene set enrichment analysis (GSEA). Some different expressed genes between groups were selected to determine their relationship with immune cells and immune checkpoints.ResultsWe found an IRGPs signature consisting of 5 IRGPs. Different risk based on IRGPs signature is a independent prognostic factor both in the discovery and validation cohorts. High risk group has some immune positive cells and more immune repressive cells than low risk group by means of immune infiltration. We discovered some pathways are more active in the high risk group, leading to immune suppression, drug resistance and tumor evasion. In two specific signaling, some genes are over expressed in high risk group and positive related to immune repressive cells and immune checkpoints, which indicate aggression and immunotherapy resistance.ConclusionWe identified a robust IRGPs signature to predict prognosis and immune heterogeneity in glioblastoma patients. Some potential targets and pathways need to be further researched to make different patients benefit from personalized immunotherapy.


2020 ◽  
Author(s):  
Chuan Liu ◽  
Bo Chen ◽  
Zhangheng Huang ◽  
Chuan Hu ◽  
Liqing Jiang ◽  
...  

Abstract Background: As a new method for predicting tumor prognosis, the predictive effect of immune-related gene pairs (IRGPs) has been confirmed in several cancers, but there is no comprehensive analysis of the clinical significance of IRGPs in gastric cancer (GC).Methods: The clinical and gene expression profile data GC patients were obtained from the GEO database. Based on the ImmPort database, differently expressed immune-related genes (DEIRGs) events were determined by a comparison of GC samples and adjacent normal samples. Cox proportional regression was used to construct an IRGPs signature, and its availability was validated with three external validation sets. In addition, we explored the association between clinical data and immune features and established a nomogram to predict outcomes of GC patients. Result: A total of 88 DEIRGs were found in GC from the training set, which formed 3828 IRGPs. 14 overall survival (OS)-related IRGPs were used to construct the prognostic signature. As a result, the patients in the high- risk group have a poorer OS compared with the low-risk group. In addition, the fraction of CD8+ T cells, plasma cells, T cells CD4 memory activated, and macrophages M1 were higher in the high-risk group. The expression of two immune checkpoints, CD276 and VTCN1, was significantly higher in the high-risk group. Based on the independent prognostic factors, a nomogram was established and showed excellent performance.Conclusion: The 14 OS-related IRGPs signature was associated with the OS, immune cells, and immune checkpoints of GC patients, which can provide the basis of related immunotherapy.


2020 ◽  
Vol 29 ◽  
pp. 096368972097713
Author(s):  
Xueping Jiang ◽  
Yanping Gao ◽  
Nannan Zhang ◽  
Cheng Yuan ◽  
Yuan Luo ◽  
...  

Tumor microenvironment (TME) has critical impacts on the pathogenesis of lung adenocarcinoma (LUAD). However, the molecular mechanism of TME effects on the prognosis of LUAD patients remains unclear. Our study aimed to establish an immune-related gene pair (IRGP) model for prognosis prediction and internal mechanism investigation. Based on 702 TME-related differentially expressed genes (DEGs) extracted from The Cancer Genome Atlas (TCGA) training cohort using the ESTIMATE algorithm, a 10-IRGP signature was established to predict LUAD patient prognosis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that DEGs were significantly associated with tumor immune response. In both TCGA training and Gene Expression Omnibus validation datasets, the risk score was an independent prognostic factor for LUAD patients using Lasso-Cox analysis, and patients in the high-risk group had poorer prognosis than those in the low-risk one. In the high-risk group, M2 macrophage and neutrophil infiltrations were higher, while the levels of T cell follicular helpers were significantly lower. The gene set enrichment analysis results showed that DNA repair signaling pathways were involved. In summary, we established an IRGP signature as a potential biomarker to predict the prognosis of LUAD patients.


Author(s):  
Yanan Xue ◽  
Yinan Xue ◽  
Zhengcai Wang ◽  
Yongzhen Mo ◽  
Pinyan Wang ◽  
...  

Abstract Background: We aimed to identify immune-related signature for predicting cutaneous melanoma (CM) prognosis. Methods: We used TCGA samples (n=471) to develop the best 23 Immune related gene pairs (23-IRGP) prognostic signature and divided patients into high- and low-immune risk group in TCGA dataset and validation datasets: GSE65904 (n=214), GSE59455 (n=141), and GSE22153 (n=79). Results: 23-IRGP presented precise ability in cutaneous melanoma (CM) which high-risk groups showed poor prognosis and indicated significant predict power in immune micro-environment and biological analysis as well. Conclusions: we established a novel promising prognostic model in CM and built the bridge between immune micro-environment and CM patient results. This approach can be applied to discover the signatures in other diseases without technical bias from different platforms.


Sign in / Sign up

Export Citation Format

Share Document