scholarly journals A Dual-Targeting Ruthenium Nanodrug that Inhibits Primary Tumor Growth and Lung Metastasis by the PARP/ATM Pathway

2020 ◽  
Author(s):  
Yu Lu ◽  
Di Zhu ◽  
Lin Gui ◽  
Yuanming Li ◽  
Wenjing Wang ◽  
...  

Abstract Many studies have found that ruthenium complexes have unique biochemical characteristics and thus inhibit tumor growth or metastasis. Our aim was to report a novel dual-targeting ruthenium candidate 2b with both antitumor and antimetastatic functions that could target tumor sites using both EPR effects and TF/TFR. It was composed of ruthenium-complexed carboline acid and four chloride ions. In vitro, 2b could trigger DNA cleavage and thus block the cell cycle and cause apoptosis by the PARP/ATM pathway. In vivo, 2b could inhibit not only LLC tumor growth but also lung metastasis. We found apoptosis and decrease in CD31 expression in tumor tissue. In addition, we also found that 2b could collect in tumor tissue. Thus, we concluded that 2b could target tumors, inhibit tumor growth and prevent lung metastasis.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yu Lu ◽  
Di Zhu ◽  
Lin Gui ◽  
Yuanming Li ◽  
Wenjing Wang ◽  
...  

Abstract Background Many studies have found that ruthenium complexes possess unique biochemical characteristics and inhibit tumor growth or metastasis. Results Here, we report the novel dual-targeting ruthenium candidate 2b, which has both antitumor and antimetastatic properties and targets tumor sites through the enhanced permeability and retention (EPR) effect and transferrin/transferrin receptor (TF/TFR) interaction. The candidate 2b is composed of ruthenium-complexed carboline acid and four chloride ions. In vitro, 2b triggered DNA cleavage and thus blocked cell cycle progression and induced apoptosis via the PARP/ATM pathway. In vivo,2b inhibited not only Lewis lung cancer (LLC) tumor growth but also lung metastasis. We detected apoptosis and decreased CD31 expression in tumor tissues, and ruthenium accumulated in the primary tumor tissue of C57BL/6 mice implanted with LLC cells. Conclusions Thus, we conclude that 2b targets tumors, inhibits tumor growth and prevents lung metastasis.


2021 ◽  
Author(s):  
Li-Qing Xu ◽  
Li-Jie Yao ◽  
Dan Jiang ◽  
Min Chen ◽  
Wen-Zhong Liao ◽  
...  

Abstract Background: Breast cancer is the most common cause of cancer-related death among women, and patients with triple-negative breast cancer (TNBC) have poor prognosis, so it is necessary to develop new effective therapies urgently. Recent studies have demonstrated that uracil auxotroph Toxoplasma gondii vaccine displays antitumor effects. Here, we examined the immunotherapy effects of an attenuated uracil auxotroph strain of T. gondii against 4T1 murine breast cancer.Methods: We constructed a uracil auxotroph strain, the orotidine 5′-monophosphate decarboxylase gene deleted strain of T. gondii (RH-Δompdc) with the CRISPR/Cas9 technology. Its virulence in vitro and in vivo was determined by parasite replication assay, plaque assay, the parasite burden detection in mice peritoneal fluids and the survival analysis of T. gondii infection mice. Its immune modulation ability was evaluated by cytokines detection. Its antitumor effect was evaluated after its in situ inoculation to 4T1 tumors in mouse model, the tumor volume was measured, the 4T1 lung metastasis was detected by H&E and Ki67 antibody staining, and the cytokines levels were measured by ELISA.Results: RH-Δompdc strain could proliferate normally with uracil supplement, however, it was unable to propagate without uracil and in vivo, which implicated that it is avirulent to the hosts. This mutant showed vaccine characteristics that it could induce intense immune responses both in vitro and in vivo by boosting the expression of inflammatory cytokines significantly. RH-Δompdc in situ inoculation to the 4T1 tumors in mice could inhibit the tumor growth, reduce the lung metastasis, promote the survival of the tumor-bearing mice, and also increase the secretion of Th1 cytokines IL-12 and IFN-γ both in serum and in the tumor microenvironment (TME). Conclusion: The uracil auxotroph RH-Δompdc inoculation to the 4T1 tumors stimulated the anti-infection and antitumor immunity in mice, resulted in the inhibition of tumor growth and metastasis, the promotion in survival of the tumor-bearing mice, and the increasing secretion of IL-12 and IFN-γ both in serum and in the TME. Our findings implied that the immunomodulation resulted by RH-Δompdc could be a potential antitumor strategy.


2012 ◽  
Author(s):  
Stuart D. Shumway ◽  
Amy D. Guertin ◽  
Melissa M. Martin ◽  
Brian Roberts ◽  
Melissa S. Hurd ◽  
...  

2015 ◽  
Author(s):  
Yuanhui Zhang ◽  
Yuan Wang ◽  
Lina Wang ◽  
George Aslanidi ◽  
Arun Srivastava ◽  
...  

2014 ◽  
Vol 12 (6) ◽  
pp. 483-494 ◽  
Author(s):  
Yuan-hui Zhang ◽  
Yuan Wang ◽  
Ali Hussein Yusufali ◽  
Frederick Ashby ◽  
Daniel Zhang ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Ganggang Mu ◽  
Yijie Zhu ◽  
Zehua Dong ◽  
Lang Shi ◽  
Yunchao Deng ◽  
...  

BackgroundTumor-associated macrophages (TAMs) are indispensable to mediating the connections between cells in the tumor microenvironment. In this study, we intended to research the function and mechanism of Calmodulin2 (CALM2) in gastric cancer (GC)-TAM microenvironment.Materials and methodsCALM2 expression in GC tissues and GC cells was determined through quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). The correlation between CALM2 level and the survival rate of GC patients was assessed. The CALM2 overexpression or knockdown model was constructed to evaluate its role in GC cell proliferation, migration, and invasion. THP1 cells or HUVECs were co-cultured with the conditioned medium of GC cells. Tubule formation experiment was done to examine the angiogenesis of endothelial cells. The proliferation, migration, and polarization of THP1 cells were measured. A xenograft model was set up in BALB/c male nude mice to study CALM2x’s effects on tumor growth and lung metastasis in vivo. Western Blot (WB) checked the profile of JAK2/STAT3/HIF-1/VEGFA in GC tissues and cells.ResultsIn GC tissues and cell lines, CALM2 expression was elevated and positively relevant to the poor prognosis of GC patients. In in-vitro experiments, CALM2 overexpression or knockdown could facilitate or curb the proliferation, migration, invasion, and angiogenesis of HUVECs and M2 polarization of THP1 cells. In in-vivo experiments, CALM2 boosted tumor growth and lung metastasis. Mechanically, CALM2 could arouse the JAK2/STAT3/HIF-1/VEGFA signaling. It was also discovered that JAK2 and HIF-1A inhibition could attenuate the promoting effects of CALM2 on GC, HUVECs cells, and macrophages.ConclusionCALM2 modulates the JAK2/STAT3/HIF-1/VEGFA axis and bolsters macrophage polarization, thus facilitating GC metastasis and angiogenesis.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 362 ◽  
Author(s):  
Thomas Chen ◽  
Nymph Chan ◽  
Radu Minea ◽  
Hannah Hartman ◽  
Florence Hofman ◽  
...  

The chemotherapeutic agent temozolomide (TMZ) kills tumor cells preferentially via alkylation of the O6-position of guanine. However, cells that express the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT), or harbor deficient DNA mismatch repair (MMR) function, are profoundly resistant to this drug. TMZ is in clinical use for melanoma, but objective response rates are low, even when TMZ is combined with O6-benzylguanine (O6BG), a potent MGMT inhibitor. We used in vitro and in vivo models of melanoma to characterize the early events leading to cellular TMZ resistance. Melanoma cell lines were exposed to a single treatment with TMZ, at physiologically relevant concentrations, in the absence or presence of O6BG. Surviving clones and mass cultures were analyzed by Western blot, colony formation assays, and DNA methylation studies. Mice with melanoma xenografts received TMZ treatment, and tumor tissue was analyzed by immunohistochemistry. We found that MGMT-negative melanoma cell cultures, before any drug treatment, already harbored a small fraction of MGMT-positive cells, which survived TMZ treatment and promptly became the dominant cell type within the surviving population. The MGMT-negative status in individual cells was not stable, as clonal selection of MGMT-negative cells again resulted in a mixed population harboring MGMT-positive, TMZ-resistant cells. Blocking the survival advantage of MGMT via the addition of O6BG still resulted in surviving clones, although at much lower frequency and independent of MGMT, and the resistance mechanism of these clones was based on a common lack of expression of MSH6, a key MMR enzyme. TMZ treatment of mice implanted with MGMT-negative melanoma cells resulted in effective tumor growth delay, but eventually tumor growth resumed, with tumor tissue having become MGMT positive. Altogether, these data reveal stochastic expression of MGMT as a pre-existing, key determinant of TMZ resistance in melanoma cell lines. Although MGMT activity can effectively be eliminated by pharmacologic intervention with O6BG, additional layers of TMZ resistance, although considerably rarer, are present as well and minimize the cytotoxic impact of TMZ/O6BG combination treatment. Our results provide rational explanations regarding clinical observations, where the TMZ/O6BG regimen has yielded mostly disappointing outcomes in melanoma patients.


2020 ◽  
Author(s):  
Xiangshang Xu ◽  
Li Li ◽  
Xiaolan Li ◽  
Deding Tao ◽  
Peng Zhang ◽  
...  

Abstract Background: RNAi-based technology has achieved good results in both in vitro and in vivo applications, and it is expected to become a good genetic treatment for some diseases, especially neoplastic diseases. But there are still many obstacles in the in vivo application, the most important thing is the lack of an efficient and safe carrier.Methods: In this study, we designed and constructed a new siRNA delivery, which was named as aptamer-protamine-siRNA nanoparticle (APR). APR was consisted of ErbB3 aptamer, protamine and siRNA. We used Zeta nanosize to detect the size of APR to verify whether it is a nano-scale compound. We use the FAMRNA to replace the siRNA to detect whether APR could recognize and enter ErbB3 positive MCF-7 cells. The we replaced the siRNA as oncogene suvivin siRNA to detect whether APR could inhibit tumor growth by silence surviving, and replaced siRNA to CDK1 siRNA to detect the cell cycle blocking effect. At last we tested the anticancer effect and safety of APR by carrying survivin siRNA in MCF-7 bearing nude mice. Results: APR was identified as a nanoscale compound. It showed specific targeting for ErbB3-positive MCF-7 cancer cells. APR has demonstrated the characteristics of inhibiting tumor growth by carrying siRNA against oncogene survivin. APR could also block cell cycle of MCF-7 cells by delivering CDK1 siRNAs. In the ErbB3 positive breast cancer xenograft mice model, APR nanoparticles could inhibit tumor growth and cause tumor regression without any toxicity. Conclusions: In both in vivo and in vitro applications, APR nanoparticles could be targeted to recognize and enter ErbB3 positive tumor cells, and play a corresponding role by silencing targeted gene expression. APR nanoparticle is expected to become a good tumor treatment option.


Sign in / Sign up

Export Citation Format

Share Document