scholarly journals Mycorrhization of Quercus Mongolica Seedlings by Tuber Melanosporum Alters Root Carbon Exudation and Rhizosphere Bacterial Communities

Author(s):  
Yanliang Wang ◽  
Ran Wang ◽  
Bin Lu ◽  
Alexis Guerin-Laguette ◽  
Xinhua He ◽  
...  

Abstract Aims To study how ectomycorrhizas (ECMs) mediate plant performance and rhizosphere soil bacterial communities via altered physiological characteristics and root carbon exudation. Methods Tuber melanosporum-colonized and uncolonized Quercus mongolica seedlings were grown on a substrate consisting of 41 % peat, 41 % pumice, 9 % pine bark and 9 % lime. Gas exchange fluorescence system, inductively coupled plasma atomic-emission spectrometer, high-performance liquid chromatography, gas chromatography and mass spectrometry, and 16S rRNA sequencing were used to analyze photosynthetic and nutritional characteristics, and rhizosphere carbon exudates, and bacterial communities. Results Tuber melanosporum mycorrhization increased leaf photosynthetic rate (by 69 %) and phosphorus concentration (94 %); increased rhizosphere pH (0.4 units), total organic carbon (TOC, 76 %) and acid phosphatase activity (33 %); but decreased leaf potassium concentration (26 %) and rhizosphere organic anions (50 %). Additionally, sugars like galactose were present in rhizosphere extract of colonized, but not uncolonized seedlings. Mycorrhization altered rhizosphere bacterial communities, with only ~10 % operational taxonomic units (OTUs) shared by both colonized and uncolonized seedlings; T. melanosporum enriched the phylum actinobacteria and the OTU of amb-16S-1323, IMCC26256 and PLTA13, but reduced SWB02. The abundances of different OTUs were differently affected by T. melanosporum colonization, and they were correlated with different physiological and/or rhizosphere factors. Conclusion Our results demonstrate that T. melanosporum ECM colonization can regulate carbon economy and rhizosphere bacterial communities of Q. mongolica seedlings grown in a previously sterilized peat-based substrate, to promote plant growth and nutrient cycling.

2021 ◽  
Author(s):  
Juana Munoz-Ucros ◽  
Roland C. Wilhelm ◽  
Daniel H. Buckley ◽  
Taryn L. Bauerle

BIO-PROTOCOL ◽  
2015 ◽  
Vol 5 (16) ◽  
Author(s):  
Laura White ◽  
Volker Br�zel ◽  
Senthil Subramanian

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 981
Author(s):  
Barbara Słomka-Słupik ◽  
Jacek Podwórny ◽  
Beata Grynkiewicz-Bylina ◽  
Marek Salamak ◽  
Bibianna Bartoszek ◽  
...  

The article analyzes the composition of concrete taken from various elements from a 100-year-old bridge in South Poland, so as to analyze its technical condition. The main methods applied during experimental work were: Designation of pH, free chloride content, salinity, XRD and SEM examinations, as well as metals determination using inductively coupled plasma mass spectrometry (ICP­MS), high-performance liquid chromatography (HPLC)-ICP-MS, and cold-vapor atomic absorption spectroscopy (CV-AAS). The concrete of the bridge was strongly carbonated and decalcified with an extremely high content of chlorides. The pH of the concrete was in a range from 10.5 to 12.0. Acid soluble components were between 9.9% and 17.6%. Typical sulfate corrosion phases of concrete were not detected. Friedels’ salt was found only at the extremity of an arch. The crown block was corroded to the greatest extent. Various heavy metals were absorbed into the concrete, likely from previous centuries, when environmental protection policy was poor. The applied research methodology can be used on bridges exposed to specific external influences. The acquired knowledge can be useful in the management processes of the bridge infrastructure. It can help in making decisions about decommissioning or extending the life cycle of the bridge. This work should also sensitize researchers and decision-makers to the context of “bridge safety”.


Author(s):  
Yung-Chun Chen ◽  
Shiuh-Jen Jiang

Liquid chromatography and dynamic reaction cell inductively coupled plasma mass spectrometry are used in tandem for the simultaneous speciation of arsenic and mercury in fish.


2020 ◽  
Vol 10 (7) ◽  
pp. 2595 ◽  
Author(s):  
Chih-Ling Huang ◽  
Wei Fang ◽  
Bo-Rui Huang ◽  
Yan-Hsiung Wang ◽  
Guo-Chung Dong ◽  
...  

Bioactive glass (BG) was made by the sol–gel method and doped with boron (B) to increase its bioactivity. Microstructures of BG and B-doped BG were observed by scanning electron microscopy, and phase identification was performed using an X-ray diffraction diffractometer. The ion concentrations released after soaking in simulated body fluid (SBF) for 1, 4, and 7 days were measured by inductively coupled plasma mass spectrometry, and the pH value of the SBF was measured after soaking samples to determine the variation in the environment. Brunauer–Emmett–Teller (BET) analysis was performed to further verify the characteristics of mesoporous structures. High performance liquid chromatography was used to evaluate the drug delivery ability of teicoplanin. Results demonstrated that B-doped BG performed significantly better than BG in parameters assessed by the BET analysis. B-doped BG has nanopores and more rough structures, which is advantageous for drug delivery as there are more porous structures available for drug adsorption. Moreover, B-doped BG was shown to be effective for keeping pH values stable and releasing B ions during soaking in SBF. The cumulative release of teicoplanin from BG and B-doped BG reached 20.09% and 3.17% on the first day, respectively. The drug release gradually slowed, reaching 29.43% and 4.83% after 7 days, respectively. The results demonstrate that the proposed bioactive glass has potential as a drug delivery system.


Sign in / Sign up

Export Citation Format

Share Document