scholarly journals Uncharted waters: Mesenchymal stem cell Treatment for Pediatric Refractory Rheumatic Diseases; A Single Center Case Series

Author(s):  
Stephen Chee-Yung Wong ◽  
Leah C Medrano ◽  
Alice D Hoftman ◽  
Olcay Y Jones ◽  
Deborah K McCurdy

Abstract Background:With the advent of innovative therapies including biologics and Janus kinase inhibitors, children with rheumatic diseases are more likely to have improved outcomes. Yet, despite these advances, some children do not respond, or they, or their parents fear adverse events and seek other alternatives. Increasingly, there are private companies that offer mesenchymal stem cells (MSC) as an alternative and describe it as a more natural therapy for rheumatic diseases, often insinuating that there will be a cure. Mesenchymal stem cells have immunomodulatory properties, and transplantation of these stem cells have been used to successfully treat immunologic conditions like graft-versus-host disease. More recently, MSC research in adults with lupus has been encouraging, but the clinical trials are still underway and in most, mesenchymal stem cell therapy is not a standalone treatment. This retrospective case series will highlight three cases of children with refractory autoimmune disease whose parents sought out and received MSC therapy as a self-decision without first seeking medical advice from our specialty. In our cases, the three families felt that their children were improved and in two believed that their child was cured. Mesenchymal stem cells have the potential of beneficial immunomodulation and may be a powerful tool in the therapy of rheumatic disease, but well controlled clinical trials are necessary and should be designed and monitored by experts in childhood rheumatic disease. Case Presentation:Three children with three different rheumatic diseases; systemic lupus erythematosus, mixed connective tissue disease and juvenile idiopathic arthritis were under the care of pediatric rheumatology at a large, tertiary-care, teaching institution. Multiple non-biologic and biologic disease-modifying anti-rheumatic drugs failed to significantly decrease disease activity, and as a result, the families chose to undergo MSC therapy. After transplantation, all children improved per patient and parent report and tapered off conventional immunosuppressive drugs. No serious adverse events occurred in these three patients. Conclusion:The three cases presented in this study reflect comparable beneficial outcomes and minimal risks published in adult studies. These were not controlled studies, however, and benefit was reported rather than documented. These cases suggest that MSC transplantation may prove a promising adjunctive treatment option; however, further research, development of standardized infusion therapy protocols, and well-designed and monitored clinical trials are essential.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Stephen C. Wong ◽  
Leah C. Medrano ◽  
Alice D. Hoftman ◽  
Olcay Y. Jones ◽  
Deborah K. McCurdy

Abstract Background With the advent of innovative therapies including biologics and Janus kinase inhibitors, children with rheumatic diseases are more likely to have improved outcomes. Despite these advances, some children do not respond, or they, or their parents fear adverse events and seek other alternatives. Increasingly, private companies are offering mesenchymal stem cells (MSC) as an alternative, which are described as natural therapies for rheumatic diseases, often insinuating them as a cure. MSC have immunomodulatory properties, and transplantation of these stem cells have been used to successfully treat immunologic conditions like graft-versus-host disease. Lately, MSC research in adult lupus has been encouraging, but the clinical trials are still underway and in most, MSC therapy is not a standalone treatment. This retrospective case series will highlight three cases of pediatric refractory autoimmune disease whose parents sought out and received MSC therapy as a self-decision without first seeking medical advice from our specialty. The three families felt that their children were improved and in two believed that their child was cured. MSC have the potential of beneficial immunomodulation and may be a powerful tool in the therapy of rheumatic disease, but well controlled clinical trials are necessary and should be designed and monitored by experts in childhood rheumatic disease. Case presentation Three children with three different rheumatic diseases; systemic lupus erythematosus, mixed connective tissue disease and juvenile idiopathic arthritis were under the care of pediatric rheumatology at a large, tertiary-care, teaching institution. Multiple non-biologic and biologic disease-modifying anti-rheumatic drugs failed to significantly decrease disease activity, and as a result, the families chose to undergo MSC therapy. After transplantation, all children improved per patient and parent report and tapered off conventional immunosuppressive drugs. No serious adverse events occurred in these three patients. Conclusion The three cases presented in this report reflect comparable beneficial outcomes and minimal risks published in adult studies. These were not controlled studies, however, and benefit was reported rather than documented. These cases suggest that MSC transplantation may prove a promising adjunctive treatment option; however, further research, development of standardized infusion therapy protocols, and well-designed monitored clinical trials are essential.


2020 ◽  
Vol 12 (7) ◽  
pp. 688-705
Author(s):  
Jing-Han Yang ◽  
Feng-Xia Liu ◽  
Jing-Hua Wang ◽  
Min Cheng ◽  
Shu-Feng Wang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuling Huang ◽  
Lina Yang

AbstractFibrosis is likely to occur in many tissues and organs to induce cicatrisation and dysfunction. The therapeutic regimens for delaying and even reversing fibrosis are quite limited at present. In nearly a decade, mesenchymal stem cells (MSCs) have been widely acknowledged as useful in treating fibrotic diseases in preclinical and clinical trials. Further preclinical studies indicated that the effects of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are probably superior to that of MSCs. At present, MSC-EVs have attracted much attention in treating fibrosis of lung, liver, kidney, skin, and heart. By contrast, a significant knowledge-gap remains in treating fibrosis of other tissues and organs (including uterus, gastrointestinal tract, and peritoneum) with the aid of MSC-EVs. This review summarises the preclinical research status of MSC-EVs in treating fibrotic diseases and proposes solutions to existing problems, which contribute to further clinical research on the treatment of fibrotic diseases with MSC-EVs in the future.


2021 ◽  
pp. 036354652098681
Author(s):  
Monketh Jaibaji ◽  
Rawan Jaibaji ◽  
Andrea Volpin

Background: Osteochondral lesions are a common clinical problem and their management has been historically challenging. Mesenchymal stem cells have the potential to differentiate into chondrocytes and thus restore hyaline cartilage to the defect, theoretically improving clincal outcomes in these patients. They can also be harvested with minimal donor site morbidity. Purpose: To assess the clinical and functional outcomes of mesenchymal stem cell implantation to treat isolated osteochondral defects of the knee. A secondary purpose is to assess the quality of the current available evidence as well as the radiological and histological outcomes. We also reviewed the cellular preparation and operative techniques for implantation. Study Design: Systematic review. Methods: A comprehensive literature search of 4 databases was carried out: CINAHL, Embase, MEDLINE, and PubMed. We searched for clinical studies reporting the outcomes on a minimum of 5 patients with at least 12 months of follow-up. Clinical, radiological, and histological outcomes were recorded. We also recorded demographics, stem cell source, culture technique, and operative technique. Methodological quality of each study was assessed using the modified Coleman methodology score, and risk of bias for the randomized controlled studies was assessed using the Cochrane Collaboration tool. Results: Seventeen studies were found, encompassing 367 patients. The mean patient age was 35.1 years. Bone marrow was the most common source of stem cells utilized. Mesenchymal stem cell therapy consistently demonstrated good short- to medium-term outcomes in the studies reviewed with no serious adverse events being recorded. There was significant heterogeneity in cell harvesting and preparation as well as in the reporting of outcomes. Conclusion: Mesenchymal stem cells demonstrated a clinically relevant improvement in outcomes in patients with osteochondral defects of the knee. More research is needed to establish an optimal treatment protocol, long-term outcomes, and superiority over other therapies. Registration: CRD42020179391 (PROSPERO).


RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18685-18692
Author(s):  
Hiroki Masuda ◽  
Yoshinori Arisaka ◽  
Masahiro Hakariya ◽  
Takanori Iwata ◽  
Tetsuya Yoda ◽  
...  

Molecular mobility of polyrotaxane surfaces promoted mineralization in a co-culture system of mesenchymal stem cells and endothelial cells.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Xiaoyu Pu ◽  
Siyang Ma ◽  
Yan Gao ◽  
Tiankai Xu ◽  
Pengyu Chang ◽  
...  

Radiation-induced damage is a common occurrence in cancer patients who undergo radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation. Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation damage have not been fully elucidated, we intend to translate their biological features into a radiation damage model and aim to provide new insight into the management of radiation damage.


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1592
Author(s):  
Sevil Özer ◽  
H. Seda Vatansever ◽  
Feyzan Özdal-Kurt

Bone marrow mesenchymal stem cells (BM-MSCs) are used to repair hypoxic or ischemic tissue. After hypoxic the level of ATP is decreases, cellular functions do not continue and apoptosis or necrosis occur. Apoptosis is a progress of programmed cell death that occurs in normal or pathological conditions. In this study, we were investigated the hypoxic effect on apoptosis in mesenchymal stem cell. Bone marrow-derived stem cells were cultured in hypoxic (1% or 3%) or normoxic conditions 24, 96 well plates for 36 h. Cell viability was shown by MTT assay on 36 h. After fixation of cells with 4% paraformaldehyde, distributions of caspase-3, Bcl-2 and Bax with indirect immunoperoxidase technique, apoptotic cells with TUNEL assay were investigated. All staining results were evaluated using H-score analyses method with ANOVA, statistically. As a result, hypoxic condition was toxic for human mesenchymal stem cells and the number of death cell was higher in that than normoxic condition.


2015 ◽  
Vol 35 (10) ◽  
pp. 1700-1711 ◽  
Author(s):  
Fenfang Chen ◽  
Xia Lin ◽  
Pinglong Xu ◽  
Zhengmao Zhang ◽  
Yanzhen Chen ◽  
...  

Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance and differentiation. BMPs can induce osteogenesis and inhibit myogenesis of mesenchymal stem cells. Canonical BMP signaling is stringently controlled through reversible phosphorylation and nucleocytoplasmic shuttling of Smad1, Smad5, and Smad8 (Smad1/5/8). However, how the nuclear export of Smad1/5/8 is regulated remains unclear. Here we report that the Ran-binding protein RanBP3L acts as a nuclear export factor for Smad1/5/8. RanBP3L directly recognizes dephosphorylated Smad1/5/8 and mediates their nuclear export in a Ran-dependent manner. Increased expression of RanBP3L blocks BMP-induced osteogenesis of mouse bone marrow-derived mesenchymal stem cells and promotes myogenic induction of C2C12 mouse myoblasts, whereas depletion of RanBP3L expression enhances BMP-dependent stem cell differentiation activity and transcriptional responses. In conclusion, our results demonstrate that RanBP3L, as a nuclear exporter for BMP-specific Smads, plays a critical role in terminating BMP signaling and regulating mesenchymal stem cell differentiation.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
O. O. Maslova ◽  
N. S. Shuvalova ◽  
O. M. Sukhorada ◽  
S. M. Zhukova ◽  
O. G. Deryabina ◽  
...  

The object of the paper is to show the heterogeneity of 300 cord samples processed in the current research. The differences in effectiveness of mesenchymal stem cell (MSC) isolation are shown. Moreover, the recommendations for choosing the method of MSC isolation depending on the value of stromal-vascular rate are given. The data can be useful for selecting the optimal conditions to obtain MSC and for further cryopreservation of umbilical cord tissue.


Nanoscale ◽  
2020 ◽  
Author(s):  
Naishun Liao ◽  
Da Zhang ◽  
Ming Wu ◽  
Huang-Hao Yang ◽  
Xiaolong Liu ◽  
...  

Adipose tissue derived mesenchymal stem cell (ADSC)-based therapy is attractive for liver diseases, but the long-term therapeutic outcome is still far from satisfaction due to low hepatic engraftment efficiency of...


Sign in / Sign up

Export Citation Format

Share Document