scholarly journals Impulsive State Estimation for Nonlinear Systems with Redundant Communication Channels and Markov Delay

Author(s):  
Hong-Xia Rao ◽  
Yuru Guo ◽  
Ye Kuang ◽  
Ming Lin ◽  
Yong Xu

Abstract The state estimation issue for the discrete-time nonlinear systems with Markov delay is investigated in this paper, where the redundant communication channel is considered to ensure the reliability of transmission. Because the channel capacity is limited, the packet dropout conditions of the main channel and the redundant channel are described by the Bernoulli stochastic variables. In addition, a mode-dependent estimator is proposed based on the current state and the delayed state, simultaneously. Combining with the impulsive control strategy, the efficiency of estimator is improved. An augmented estimation error system is proposed to deal with the Markov delay in the nonlinear system, subsequently, a sufficient condition that ensures the asymptotic stability of the augmented error system is obtained by a constructed Lyapunov functional candidate and the gains of the impulsive estimator are derived. Finally, a numerical example of moving vehicle is utilized to illustrate the developed results.

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Hongwen Xu ◽  
Huaiqin Wu ◽  
Ning Li

The interval exponential state estimation and robust exponential stability for the switched interval neural networks with discrete and distributed time delays are considered. Firstly, by combining the theories of the switched systems and the interval neural networks, the mathematical model of the switched interval neural networks with discrete and distributed time delays and the interval estimation error system are established. Secondly, by applying the augmented Lyapunov-Krasovskii functional approach and available output measurements, the dynamics of estimation error system is proved to be globally exponentially stable for all admissible time delays. Both the existence conditions and the explicit characterization of desired estimator are derived in terms of linear matrix inequalities (LMIs). Moreover, a delay-dependent criterion is also developed, which guarantees the robust exponential stability of the switched interval neural networks with discrete and distributed time delays. Finally, two numerical examples are provided to illustrate the validity of the theoretical results.


2022 ◽  
Vol 7 (1) ◽  
pp. 143-155
Author(s):  
Jin Cheng ◽  

<abstract><p>In this paper, global exponential outer synchronization of coupled nonlinear systems with general coupling matrices are investigated via pinning impulsive control. More realistic and more general partially coupled drive-response systems are established, where the completely communication channel matrix between coupled nodes may not be a permutation matrix. By using pinning impulsive strategy involving pinning ratio and our generalised lower average impulsive interval method, a number of novel and less restrictive synchronization criteria are proposed. In the end, a numerical example is constructed to indicate the effectiveness of our theoretical results.</p></abstract>


Author(s):  
Mark Spiller ◽  
Dirk Söffker

This article is addressed to the topic of robust state estimation of uncertain nonlinear systems. In particular, the smooth variable structure filter (SVSF) and its relation to the Kalman filter is studied. An adaptive Kalman filter is obtained from the SVSF approach by replacing the gain of the original filter. Boundedness of the estimation error of the adaptive filter is proven. The SVSF approach and the adaptive Kalman filter achieve improved robustness against model uncertainties if filter parameters are suitably optimized. Therefore, a parameter optimization process is developed and the estimation performance is studied.


Author(s):  
Huyen T. Dinh ◽  
S. Bhasin ◽  
R. Kamalapurkar ◽  
W. E. Dixon

A dynamic neural network (DNN) observer-based output feedback controller for uncertain nonlinear systems with bounded disturbances is developed. The DNN-based observer works in conjunction with a dynamic filter for state estimation using only output measurements during online operation. A sliding mode term is included in the DNN structure to robustly account for exogenous disturbances and reconstruction errors. Weight update laws for the DNN, based on estimation errors, tracking errors, and the filter output are developed, which guarantee asymptotic regulation of the state estimation error. A combination of a DNN feedforward term, along with the estimated state feedback and sliding mode terms yield an asymptotic tracking result. The developed output feedback (OFB) method yields asymptotic tracking and asymptotic estimation of unmeasurable states for a class of uncertain nonlinear systems with bounded disturbances. A two-link robot manipulator is used to investigate the performance of the proposed control approach.


Author(s):  
Gholamreza Nassajian ◽  
Saeed Balochian

In this paper, multi-model estimation and fault detection using neural network is proposed for an unknown time continuous fractional order nonlinear system. Fractional differentiation is considered based on Caputo concept and the fractional order is considered to be between 0 and 1. In order to estimate a time continuous fractional order nonlinear system with unknown term in its dynamic, single-layer and double-layer RBF neural network is used. First, a parallel-series neural network observer is designed for state estimation. Weights of the neural network are updated adaptively and updating laws are presented in fractional order form. Using Lyapunov method, it is proved that state estimation error and weight estimation error of the neural network are bounded. Parameters of the neural estimator converge to ideal parameters which satisfy excitation condition stability. Then, multi-model estimation structure of fractional order nonlinear systems is presented and its application in fault detection is investigated. Finally, simulation results are presented to show efficiency of the proposed method.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1242
Author(s):  
Cong Huang ◽  
Bo Shen ◽  
Lei Zou ◽  
Yuxuan Shen

This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to its corresponding recursive estimator. Under the event-triggering mechanism (ETM), the current transmission is released only when the relative error of measurements is bigger than a prescribed threshold. The objective of this paper is to design an event-triggering recursive state and fault estimator such that the estimation error covariances for the state and fault are both guaranteed with upper bounds and subsequently derive the gain matrices minimizing such upper bounds, relying on the solutions to a set of difference equations. Finally, two experimental examples are given to validate the effectiveness of the designed algorithm.


Sign in / Sign up

Export Citation Format

Share Document