smooth variable structure filter
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8560
Author(s):  
Sara Rahimifard ◽  
Saeid Habibi ◽  
Gillian Goward ◽  
Jimi Tjong

Battery Management Systems (BMSs) are used to manage the utilization of batteries and their operation in Electric and Hybrid Vehicles. It is imperative for efficient and safe operation of batteries to be able to accurately estimate the State of Charge (SoC), State of Health (SoH) and State of Power (SoP). The SoC and SoH estimation must remain robust and accurate despite aging and in presence of noise, uncertainties and sensor biases. This paper introduces a robust adaptive filter referred to as the Adaptive Smooth Variable Structure Filter with a time-varying Boundary Layer (ASVSF-VBL) for the estimation of the SoC and SoH in electrified vehicles. The internal model of the filter is a third-order equivalent circuit model (ECM) and its state vector is augmented to enable estimation of the internal resistance and current bias. It is shown that system and measurement noise covariance adaptation for the SVSF-VBL approach improves the performance in state estimation of a battery. The estimated internal resistance is then utilized to improve determination of the battery’s SoH. The effectiveness of the proposed method is validated using experimental data from tests on Lithium Polymer automotive batteries. The results indicate that the SoC estimation error can remain within less than 2% over the full operating range of SoC along with an accurate estimation of SoH.


2021 ◽  
Vol 13 (22) ◽  
pp. 4612
Author(s):  
Yu Chen ◽  
Luping Xu ◽  
Guangmin Wang ◽  
Bo Yan ◽  
Jingrong Sun

As a new-style filter, the smooth variable structure filter (SVSF) has attracted significant interest. Based on the predictor-corrector method and sliding mode concept, the SVSF is more robust in the face of modeling errors and uncertainties compared to the Kalman filter. Since the estimation performance is usually insufficient in real cases where the measurement vector is of fewer dimensions than the state vector, an improved SVSF (ISVSF) is proposed by combining the existing SVSF with Bayesian theory. The ISVSF contains two steps: firstly, a preliminary estimation is performed by SVSF. Secondly, Bayesian formulas are adopted to improve the estimation for higher accuracy. The ISVSF shows high robustness in dealing with modeling uncertainties and noise. It is noticeable that ISVSF could deliver satisfying performance even if the state of the system is undergoing a sudden change. According to the simulation results of target tracking, the proposed ISVSF performance can be better than that obtained with existing filters.


2020 ◽  
pp. 102912
Author(s):  
Mohammad Avzayesh ◽  
Mamoun Abdel-Hafez ◽  
M. AlShabi ◽  
S.A. Gadsden

Author(s):  
Mark Spiller ◽  
Dirk Söffker

This article is addressed to the topic of robust state estimation of uncertain nonlinear systems. In particular, the smooth variable structure filter (SVSF) and its relation to the Kalman filter is studied. An adaptive Kalman filter is obtained from the SVSF approach by replacing the gain of the original filter. Boundedness of the estimation error of the adaptive filter is proven. The SVSF approach and the adaptive Kalman filter achieve improved robustness against model uncertainties if filter parameters are suitably optimized. Therefore, a parameter optimization process is developed and the estimation performance is studied.


Author(s):  
Abdelkader Mosbah ◽  
Fethi Demim ◽  
Ali Mansoul ◽  
Mustapha Benssalah ◽  
Abdelkrim Nemra

Simultaneous localization and mapping is very essential for autonomous navigation when the mobile robot is navigating in unknown environment without a global positioning system. Various techniques to solve the simultaneous localization and mapping problem have been extensively studied using the combination of low-cost sensors. Most of the work in mobile robotics still consists of finding solutions to problems in data exchange between mobile robot and communication control station, which is a challenging task. In fact, communication systems impose severe constraints in terms of channel capacity and transmission quality, because the transmission channel in communication systems is undergoing at the different physical phenomena like scattering, diffusion and diffraction, which occur interference and multiple path effects in wireless communications, while keeping these effects levels low. This article describes a simultaneous localization and mapping problem based on second-order smooth variable structure filter embedded in mobile robot equipped with a sensor for data wireless collection. The inclusion of the control in environments outside the mobile robot field of view can make the wireless communication simultaneous localization and mapping process much more difficult to find a solution under realistic conditions. In order to solve the simultaneous localization and mapping issue and to mitigate the fading phenomena, which affect the quality of service in advanced wireless communication systems, we use a new approach to combat the fading effect without requiring any statistical knowledge of the propagation channel parameters. Several experiments have been done in real-world applications, and good performances were obtained using a second-order smooth variable structure filter–simultaneous localization and mapping algorithm–based wireless communication.


2020 ◽  
Vol 10 (19) ◽  
pp. 6968
Author(s):  
Jinlin Gu ◽  
Mingchao Zhu ◽  
Lihua Cao ◽  
Ang Li ◽  
Wenrui Wang ◽  
...  

Aiming at on-orbit automatic assembly, an improved uncalibrated visual servo strategy for hyper-redundant manipulators based on projective homography is proposed. This strategy uses an improved homography-based task function with lower dimensions while maintaining its robustness to image defects and noise. This not only improves the real-time performance but also makes the joint space of hyper-redundant manipulator redundant to the homography-based task function. Considering that the kinematic parameters of the manipulator are easily changed in a space environment, the total Jacobian between the task function and manipulator joints is estimated online and used to construct a controller to directly control the manipulator joints without a kinematics model. When designing the controller, the above-mentioned redundancy is exploited to solve the problem of the over-limiting of the joint angles of the manipulator. The KF-SVSF method, which combines the optimality of the Kalman filter (KF) and the robustness of the smooth variable structure filter (SVSF), is introduced to the field of uncalibrated visual servos for the first time to perform the online estimation of the total Jacobian. In addition, the singular value filtering (SVF) method is adopted for the first time to avoid the interference caused by the unstable condition number of the estimated total Jacobian. Finally, simulations and experiments verify the superiority of this strategy in terms of its real-time performance and precision.


Sign in / Sign up

Export Citation Format

Share Document