scholarly journals Solar Forcing of Early Holocene Droughts on the Yucatán Peninsula

Author(s):  
Sophie Warken ◽  
Nils Schorndorf ◽  
Wolfgang Stinnesbeck ◽  
Dominik Hennhoefer ◽  
Sarah Stinnesbeck ◽  
...  

Abstract A speleothem record from the north-eastern Yucatán peninsula (Mexico) provides new insights into the tropical hydro-climate of the Americas between 11,040 and 9,520 a BP on up to sub-decadal scale. Despite the complex atmospheric reorganization during the end of the last deglaciation, the dominant internal leading modes of precipitation variability during the late Holocene were also active during the time of record. While multi-decadal variations were not persistent, decadal- and centennial-scale ENSO activity driven by solar forcing dominated Mesoamerican precipitation variability. Freshwater fluxes from the remnant Laurentide ice sheet into the Gulf of Mexico and the North Atlantic have additionally modulated the regional evaporation/precipitation balance. In particular, this study underlines the importance of solar activity on tropical and subtropical climate variability through forcing of the tropical Pacific, providing a plausible scenario for observed recurrent droughts on the decadal scale throughout the Holocene.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sophie F. Warken ◽  
Nils Schorndorf ◽  
Wolfgang Stinnesbeck ◽  
Dominik Hennhoefer ◽  
Sarah R. Stinnesbeck ◽  
...  

AbstractA speleothem record from the north-eastern Yucatán peninsula (Mexico) provides new insights into the tropical hydro-climate of the Americas between 11,040 and 9520 a BP on up to sub-decadal scale. Despite the complex atmospheric reorganization during the end of the last deglaciation, the dominant internal leading modes of precipitation variability during the late Holocene were also active during the time of record. While multi-decadal variations were not persistent, Mesoamerican precipitation was dominated by changes on the decadal- and centennial scale, which may be attributed to ENSO activity driven by solar forcing. Freshwater fluxes from the remnant Laurentide ice sheet into the Gulf of Mexico and the North Atlantic have additionally modulated the regional evaporation/precipitation balance. In particular, this study underlines the importance of solar activity on tropical and subtropical climate variability through forcing of the tropical Pacific, providing a plausible scenario for observed recurrent droughts on the decadal scale throughout the Holocene.


2016 ◽  
Vol 21 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Rodolfo Rioja-Nieto ◽  
Eric Barrera-Falcón ◽  
Edgar Torres-Irineo ◽  
Gabriela Mendoza-González ◽  
Angela P. Cuervo-Robayo

2021 ◽  
Author(s):  
Gabriela Serrato Marks ◽  
Martín Medina-Elizalde ◽  
Stephen J Burns ◽  
Syee Weldeab ◽  
Fernanda Lases-Hernandez ◽  
...  

2008 ◽  
Vol 26 (12) ◽  
pp. 4075-4080 ◽  
Author(s):  
I. Wainer ◽  
J. Servain ◽  
G. Clauzet

Abstract. In the past two decades climate research in the tropical Atlantic with respect to the inter-hemispheric gradient of sea surface temperature (SST) emphasized the predominance of decadal-scale variability. Our results show that this mode of variability is prevalent only for part of the last 130-years record (the 1880s, the 1920s and, especially, the 1970s). There is a lag of a few months between the decadal variations of the inter-hemispheric gradient of SST and the decadal variability of the North Atlantic Oscillation (NAO). This seems to indicate that the 10-year variability first develops in the tropics and then propagates polewards. The inter-hemispheric gradient of SST mode should be thought as episodic and not as a periodic oscillation.


2009 ◽  
Vol 33 (1) ◽  
pp. 93-107 ◽  
Author(s):  
Rolando Soler-Bientz ◽  
Simon Watson ◽  
David Infield

2011 ◽  
Vol 52 (8-9) ◽  
pp. 2829-2843 ◽  
Author(s):  
Rolando Soler-Bientz ◽  
Simon Watson ◽  
David Infield ◽  
Lifter Ricalde-Cab

2014 ◽  
Vol 10 (3) ◽  
pp. 2467-2518 ◽  
Author(s):  
H. Kuehn ◽  
L. Lembke-Jene ◽  
R. Gersonde ◽  
O. Esper ◽  
F. Lamy ◽  
...  

Abstract. During the last glacial termination, the upper North Pacific Ocean underwent dramatic and rapid changes in oxygenation that lead to the transient intensification of Oxygen Minimum Zones (OMZs), recorded by the widespread occurrence of laminated sediments on circum-Pacific continental margins. We present a new laminated sediment record from the mid-depth (1100 m) northern Bering Sea margin that provides insight into these deglacial OMZ maxima with exceptional, decadal-scale detail. Combined ultrahigh-resolution micro-XRF data and sediment facies analysis of laminae reveals an alternation between predominantly terrigenous and diatom-dominated opal sedimentation. The diatomaceous laminae are interpreted to represent spring/summer productivity events that occur at the retreating sea ice margin. We identified five laminated sections in the deglacial part of our site. Laminae counts were carried out on these sections and correlated to the Bølling–Allerød and Preboreal phases in North Greenland Ice Core (NGRIP) oxygen isotope record, indicating an annual deposition of individual laminae couplets. The observed rapid intra-decadal intensifications of anoxia, in particular within the Bølling–Allerød, are tightly coupled to short-term warm events through increases in regional biogenic productivity. By correlating the counted laminated sections with Bering Sea Surface Temperature records (SST) and NGRIP δ18O data, we propose a deglacial minimum SST of 6–7 °C for the preservation of laminae, which we call the deglacial temperature threshold for anoxia occurrence, a process that strongly implies a close atmospheric teleconnection between the North Pacific and North Atlantic regions. We suggest that concomitant increases in Bering Sea biogenic productivity, in combination with oxygen-poor waters entering the Being Sea, drove down oxygen concentrations to values below 0.1 mL L-1 and caused laminae preservation. Calculated benthic-planktic ventilation ages show no significant variations throughout the last deglaciation, indicating that changes in formation rates or differing sources of North Pacific mid-depth waters are not prime candidates for strengthening the OMZ at our site. The age models established by our correlation procedure allow to determine calendar age control points for the Bølling–Allerød and the Preboreal that are independent of the initial radiocarbon-based chronology. Resulting calculated reservoir ages are 875 yr during the Bølling–Allerød, and 910–770 yr for the Younger Dryas and the Preboreal, respectively.


2021 ◽  
Vol 16 (2) ◽  
pp. 145-160
Author(s):  
Gabriel Sánchez-Rivera ◽  
Oscar Frausto-Martínez ◽  
Leticia Gómez-Mendoza ◽  
Ángel Refugio Terán-Cuevas ◽  
Julio Cesar Morales Hernández

Sign in / Sign up

Export Citation Format

Share Document