scholarly journals The Potentials of Calotropis procera against Filarial Elephantiasis: An in- silico approach

Author(s):  
Aswin Mohan ◽  
Shanitha Shaji ◽  
Sunitha P ◽  
Shahanas Naisam ◽  
Nidhin Sreeku

Abstract Lymphatic filariasis is one of the major diseases that belong to the category of neglected tropical illness. Filarial nematodes are the cause of the disease and are transmitted to humans via blood-feeding arthropod vectors. Drugs such as Albendazole, Ivermectin and diethylcarbamazine are administered either individually or in combination to overcome the progress of the lymphatic filariasis. However, these drugs have some disadvantages like temporary hair loss, dizziness, nausea etc. The filarial parasites have multifunctional proteins including the Glutathione-s-transferase (GST) enzyme which plays a major role in detoxification of endogenous electrophilic compounds. This study aims at the identification of a natural molecule that has the potential to bind with the GST enzyme and thus interrupt the detoxification process within the filarial parasite, Brugia malayi. A medicinal plant Calotropis procera, owing to its anthelmintic properties was searched for the presence of potential phytocompounds. The phytocompounds were docked against the homology modeled GST enzyme using the MOE software. The results were screened and analyzed based on the Lipinski rule of 5. N-octanoate was the phytocompound obtained based on molecular docking, subjected to molecular dynamics. These results require further in vitro and in vivo validation to consider n-octanoate as a potential drug candidate for lymphatic filariasis treatment.

2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2014 ◽  
Vol 11 (7) ◽  
pp. 825-832 ◽  
Author(s):  
Wolfgang Walther ◽  
Iduna Fichtner ◽  
Frauke Hackenberg ◽  
Wojciech Streciwilk ◽  
Matthias Tacke

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 813
Author(s):  
Yoo-Seong Jeong ◽  
Min-Soo Kim ◽  
Nora Lee ◽  
Areum Lee ◽  
Yoon-Jee Chae ◽  
...  

Fexuprazan is a new drug candidate in the potassium-competitive acid blocker (P-CAB) family. As proton pump inhibitors (PPIs), P-CABs inhibit gastric acid secretion and can be used to treat gastric acid-related disorders such as gastroesophageal reflux disease (GERD). Physiologically based pharmacokinetic (PBPK) models predict drug interactions as pharmacokinetic profiles in biological matrices can be mechanistically simulated. Here, we propose an optimized and validated PBPK model for fexuprazan by integrating in vitro, in vivo, and in silico data. The extent of fexuprazan tissue distribution in humans was predicted using tissue-to-plasma partition coefficients in rats and the allometric relationships of fexuprazan distribution volumes (VSS) among preclinical species. Urinary fexuprazan excretion was minimal (0.29–2.02%), and this drug was eliminated primarily by the liver and metabolite formation. The fraction absorbed (Fa) of 0.761, estimated from the PBPK modeling, was consistent with the physicochemical properties of fexuprazan, including its in vitro solubility and permeability. The predicted oral bioavailability of fexuprazan (38.4–38.6%) was within the range of the preclinical datasets. The Cmax, AUClast, and time-concentration profiles predicted by the PBPK model established by the learning set were accurately predicted for the validation sets.


2021 ◽  
Vol 14 (7) ◽  
pp. 644
Author(s):  
Cintya Perdomo ◽  
Elena Aguilera ◽  
Ileana Corvo ◽  
Paula Faral-Tello ◽  
Elva Serna ◽  
...  

The trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania are the causative agents of human African trypanosomiasis, Chagas Disease and Leishmaniasis, respectively. These infections primarily affect poor, rural communities in the developing world, and are responsible for trapping sufferers and their families in a disease/poverty cycle. The development of new chemotherapies is a priority given that existing drug treatments are problematic. In our search for novel anti-trypanosomatid agents, we assess the growth-inhibitory properties of >450 compounds from in-house and/or “Pathogen Box” (PBox) libraries against L. infantum, L. amazonensis, L.braziliensis, T. cruzi and T. brucei and evaluate the toxicities of the most promising agents towards murine macrophages. Screens using the in-house series identified 17 structures with activity against and selective toward Leishmania: Compounds displayed 50% inhibitory concentrations between 0.09 and 25 μM and had selectivity index values >10. For the PBox library, ~20% of chemicals exhibited anti-parasitic properties including five structures whose activity against L. infantum had not been reported before. These five compounds displayed no toxicity towards murine macrophages over the range tested with three being active in an in vivo murine model of the cutaneous disease, with 100% survival of infected animals. Additionally, the oral combination of three of them in the in vivo Chagas disease murine model demonstrated full control of the parasitemia. Interestingly, phenotyping revealed that the reference strain responds differently to the five PBox-derived chemicals relative to parasites isolated from a dog. Together, our data identified one drug candidate that displays activity against Leishmania and other Trypanosomatidae in vitro and in vivo, while exhibiting low toxicity to cultured mammalian cells and low in vivo acute toxicity.


2018 ◽  
Vol 13 (2) ◽  
pp. 149 ◽  
Author(s):  
Naureen Shehzadi ◽  
Khalid Hussain ◽  
Nadeem Irfan Bukhari ◽  
Muhammad Islam ◽  
Muhammad Tanveer Khan ◽  
...  

<p class="Abstract">The present study aimed at the evaluation of anti-hyperglycemic and hepatoprotective potential of a new drug candidate, 5-[(4-chlorophenoxy) methyl]-1,3,4-oxadiazole-2-thiol (OXCPM) through in vitro and in vivo assays, respectively. The compound displayed excellent dose-dependent ɑ-amylase (28.0-92.0%), ɑ-glucosidase (40.3-93.1%) and hemoglobin glycosylation (9.0%-54.9%) inhibitory effects and promoted the uptake of glucose by the yeast cells (0.2 to 26.3%). The treatment of the isoniazid- and rifampicin- (p.o., 50 mg/kg of each) intoxicated rats with OXCPM (100 mg/kg, p.o.) resulted in restoring the normal serum levels of the non-enzymatic (total bilirubin, total protein and albumin) and bringing about a remarkable decrease in the levels of enzymatic (alanine transaminases, aspartate transaminases and alkaline phosphatase) biomarkers. The molecular docking studies indicated high binding affinity of the compound for hyperglycemia-related protein targets; fructose-1,6-bisphosphatase, beta<sub>2</sub>-adrenergic receptors and glucokinase. The results indicate that OXCPM may not only reduce hyperglycemia by enzyme inhibition but also the disease complications through protection of hemoglobin glycosylation and hepatic injury.</p><p class="Abstract"><strong>Video Clip of Methodology:</strong></p><p class="Abstract">Glucose uptake by yeast cells:   4 min 51 sec   <a href="https://www.youtube.com/v/8cJkuMtV0Wc">Full Screen</a>   <a href="https://www.youtube.com/watch?v=8cJkuMtV0Wc">Alternate</a></p>


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yanfei Du ◽  
Jun Ma ◽  
Yu Fan ◽  
Xinyu Wang ◽  
Shuzhan Zheng ◽  
...  

Fibrosis is the final common pathology of most chronic diseases as seen in the heart, liver, lung, kidney, and skin and contributes to nearly half of death in the developed countries. Fibrosis, or scarring, is mainly characterized by the transdifferentiation of fibroblasts into myofibroblasts and the excessive accumulation of extracellular matrix (ECM) secreted by myofibroblasts. Despite immense efforts made in the field of organ fibrosis over the past decades and considerable understanding of the occurrence and development of fibrosis gained, there is still lack of an effective treatment for fibrotic diseases. Therefore, identifying a new therapeutic strategy against organ fibrosis is an unmet clinical need. Naringenin, a flavonoid that occurs naturally in citrus fruits, has been found to confer a wide range of pharmacological effects including antioxidant, anti-inflammatory, and anticancer benefits and thus potentially exerting preventive and curative effects on numerous diseases. In addition, emerging evidence has revealed that naringenin can prevent the pathogenesis of fibrosis in vivo and in vitro via the regulation of various pathways that involved signaling molecules such as transforming growth factor-β1/small mother against decapentaplegic protein 3 (TGF-β1/Smad3), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), sirtuin1 (SIRT1), nuclear factor-kappa B (NF-κB), or reactive oxygen species (ROS). Targeting these profibrotic pathways by naringenin could potentially become a novel therapeutic approach for the management of fibrotic disorders. In this review, we present a comprehensive summary of the antifibrotic roles of naringenin in vivo and in vitro and their underlying mechanisms of action. As a food derived compound, naringenin may serve as a promising drug candidate for the treatment of fibrotic disorders.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A243-A243
Author(s):  
Thomas Thisted ◽  
Arnab Mukherjee ◽  
Kanam Malhotra ◽  
Zuzana Biesova ◽  
Yuliya Kleschenko ◽  
...  

BackgroundImmunotherapies, especially immune checkpoint inhibitors, have become a cornerstone of cancer treatment. Remarkable clinical responses have been observed blocking the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis across a spectrum of indications. However, innate and/or acquired resistance to anti-PD-1 blockade remains a major challenge. V-domain Ig suppressor of T-cell activation (VISTA) is a B7-family member, which promotes T-cell and myeloid quiescence and represents a promising target, particularly in combination with anti-PD-1/PD-L1 treatment. Recently, the interaction of VISTA with its receptor PSGL-1 was demonstrated to be significantly enhanced by the acidic tumor microenvironment (TME). As VISTA is highly expressed on myeloid cells, including those in the blood, antibodies binding VISTA at physiological pH 7.4 could result in rapid elimination from circulation through targeted-mediated drug disposition, making efficacious drug occupancy levels difficult to reach and potentially narrowing the therapeutic window. An antibody engineered to selectively bind and block VISTA at low pH in the TME may therefore be an ideal drug candidate.MethodsIn this study, fully human anti-VISTA antibodies were generated through pH-selective enrichment strategies of a yeast-based display library comprising highly diverse synthetic immune repertoires. The ‘parental’ antibodies have been extensively characterized using in vitro flow-cytometry, surface-plasmon resonance (SPR) and PSGL-1/VISTA inhibition assays in primary human CD4 and CD8 T-cells at pH 6.0 and pH 7.4. Eight parental antibodies were identified and tested for combinatorial efficacy with anti-PD-1 in vivo in human VISTA knock-in mice inoculated with syngeneic MC-38 tumors. These antibodies underwent further optimization for enhanced binding affinity at pH 6.0 and decreased binding at pH 7.4. ‘Progeny’ antibody ranking was based on the same in vitro and in vivo characterization as parental antibodies.ResultsEighty four parental antibodies were initially discovered. Flow-cytometry and SPR analysis revealed candidates displaying pH-dependent binding to endogenously expressed native VISTA on cells, and a PSGL-1/VISTA inhibition assay at pH 6.0 was run to identify and rank potent interface blockers. Eight candidate antibodies were tested in an in vivo intervention study in combination with anti-murine PD-1 demonstrating varied combinatorial efficacy with a subset leading to superior tumor rejection. Characterization of optimized progeny antibodies led to identification of anti-VISTA antibody SNS-101.ConclusionsEnrichment of highly diverse antibody libraries led to the identification of a pH-selective inhibitory anti-VISTA antibody SNS-101, which exerts excellent combinability with anti-PD-1 leading to superior anti-tumor activity in a mouse model.


Author(s):  
Carol V. Mesa ◽  
Gustavo A. Blandón ◽  
Diana L. Muñoz ◽  
Carlos E. Muskus ◽  
Andrés F. Flórez ◽  
...  

2020 ◽  
Vol 14 (12) ◽  
pp. e0008930
Author(s):  
Andrea Schiefer ◽  
Marc P. Hübner ◽  
Anna Krome ◽  
Christine Lämmer ◽  
Alexandra Ehrens ◽  
...  

Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal–adult-worm killing–treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4–5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.


Sign in / Sign up

Export Citation Format

Share Document