scholarly journals Modeling Thermal Systems With Fractional Models: Human Bronchus Application

Author(s):  
Jean-François Duhé ◽  
stephane victor ◽  
Pierre Melchior ◽  
Youssef Abdelmoumen ◽  
François Roubertie

Abstract Thermal modeling of systems allows heat and temperature simulations for many applications, such as refrigeration design, heat dissipation in power electronics, melting processes and bio-heat transfers. Sufficiently accurate models are especially needed in open-heart surgery where lung thermal modeling will prevent pulmonary cell dying. For simplicity purposes, simple RC circuits are often used but such models are too simple and lack of precision in dynamical terms. A more complete description of conductive heat transfer can be obtained from the heat equation by means of a two-port network. The analytical expressions obtained from such circuit models are complex and nonlinear in the frequency $\omega$. This complexity in Laplace domain is difficult to handle when it comes to control applications and more specifically during surgery, as heat transfer and temperature control of a tissue may help in reducing necrosis and preserving a greater amount of a given organ. Therefore, a frequency domain analysis of the series and shunt impedances will be presented and different techniques of approximations will be explored in order to obtain simple but sufficiently precise linear fractional transfer function models. Several approximations are proposed to model heat transfers of a human middle bronchus and will be quantified by the absolute errors.

2021 ◽  
Author(s):  
Jean-François Duhé ◽  
Stéphane Victor ◽  
Pierre Melchior ◽  
Youssef Abdelmounen ◽  
François Roubertie

Abstract Sufficiently accurate thermal modeling is necessary for many applications such as heat dissipation, melting processes, building design or even bio-heat transfers in surgery. Circuit models help modeling heat transfer dynamics: this method is simple and is often used to model thermal phenomena. However, such models well approximates low and high frequency behavior but they are not accurate enough in the middle band of interest, thus lacking of precision in dynamical terms. A more complete and accurate description of conductive heat transfer can be obtained by using a two-port network. The resulting analytical expressions are complex and nonlinear in the frequency ω. This complexity in the frequency domain is difficult to handle when it comes to control applications and more specifically in real-time applications such as surgery. Consequently, an analysis of this thermal two-port network in the frequency domain directly leads to fractional-order systems. A frequency domain analysis of the series and shunt impedances will be presented and different approximations will be explored in order to obtain simple but sufficiently precise linear fractional transfer function models. The series impedances are approximated by using asymptotic and pole-zero approximations and the shunt impedance is approximated by using a capacitance approximation and two fractional model approximations.


Author(s):  
Mathieu Pellet ◽  
Pierre Melchior ◽  
Youssef Abdelmoumen ◽  
Alain Oustaloup

This paper is about fractional system identification of a thermal model of the lungs. Usually, during open-heart surgery, an extracorporeal circulation (ECC) is carried out on the patient. In order to plug the artificial heart/lung machine on the blood stream, the lungs are disconnected from the circulatory system. This may results in postoperative respiratory complications. A method to protect the lungs has been developed by surgeon and anesthetist. It is called: bronchial hypothermia. The aim is to cool the organ in order to slow down its deterioration. Unfortunately the thermal properties of the lungs are not well-known yet. Mathematical models are useful and needed in order to improve the knowledge of these organs. As proved by several previous works, fractional models are especially appropriate to model thermal systems (model compacity, accuracy) and the dynamic of fractal systems. Thus, fractional models of the lungs have been determined using time domain system identification with the Havriliak-Negami function. A comparison with integer order models was also carried out. The aim of this paper is to present the results of this study.


2012 ◽  
Vol 701 ◽  
pp. 386-406 ◽  
Author(s):  
G. F. Lane-Serff ◽  
S. D. Sandbach

AbstractA model for steady flow in a ventilated space containing a heat source is developed, taking account of the main heat transfers at the upper and lower boundaries. The space has an opening at low level, allowing cool ambient air to enter the space, and an opening near the ceiling, allowing warm air to leave the space. The flow is driven by the temperature contrast between the air inside and outside the space (natural ventilation). Conductive heat transfer through the ceiling and radiant heat transfer from the ceiling to the floor are incorporated into the model, to investigate how these heat transports affect the flow and temperature distribution within the space. In the steady state, a layer of warm air occupies the upper part of the space, with the lower part of the space filled with cooler air (although this is warmer than the ambient air when the radiant transfer from ceiling to floor is included). Suitable scales are derived for the heat transfers, so that their relative importance can be characterized. Explicit relationships are found between the height of the interface, the opening area and the relative size of the heat transfers. Increasing heat conduction leads to a lowering of the interface height, while the inclusion of the radiant transfer tends to increase the interface height. Both of these effects are relatively small, but the effect on the temperatures of the layers is significant. Conductive heat transfer through the upper boundary leads to a significant lowering of the temperature in the space as a proportion of the injected heat flux is taken out of the space by conduction rather than advection. Radiative transfer from the ceiling to floor results in the lower layer becoming warmer than the ambient air. The results of the model are compared with full-scale laboratory results and a more complex unsteady model, and are shown to give results that are much more accurate than models which ignore the heat transfers.


1990 ◽  
Vol 63 (02) ◽  
pp. 241-245 ◽  
Author(s):  
Jørgen Gram ◽  
Thomas Janetzko ◽  
Jørgen Jespersen ◽  
Hans Dietrich Bruhn

SummaryThe tissue-type plasminogen activator related fibrinolytic system was studied in 24 patients undergoing cardiopulmonary bypass surgery. The degradation of fibrinogen and fibrin was followed during and after surgery by means of new sensitive and specific assays and the changes were related to the blood loss measured in the chest tube drain during the first 24 postoperative hours. Although tissue-type plasminogen activator was significantly released into the circulation during the period of extracor-poreal circulation (p <0.01), constantly low levels of fibrinogen degradation products indicated that a systemic generation of plasmin could be controlled by the naturally occurring inhibitors. Following extracorporeal circulation heparin was neutralized by protamine chloride, and in relation to the subsequent generation of fibrin, there was a short period with increased concentrations of fibrinogen degradation products (p <0.01) and a prolonged period of degradation of cross-linked fibrin, as detected by increased concentrations of D-Dimer until 24 h after surgery (p <0.01). Patients with a higher than the median blood loss (520 ml) in the chest tube drain had a significantly higher increase of D-Dimer than patients with a lower than the median blood loss (p <0.05).We conclude that the incorporation of tissue-type plasminogen activator into fibrin and the in situ activation of plasminogen enhance local fibrinolysis, thereby increasing the risk of bleeding in patients undergoing open heart surgery


1978 ◽  
Vol 39 (02) ◽  
pp. 474-487 ◽  
Author(s):  
E R Cole ◽  
F Bachmann ◽  
C A Curry ◽  
D Roby

SummaryA prospective study in 13 patients undergoing open-heart surgery with extracorporeal circulation revealed a marked decrease of the mean one-stage prothrombin time activity from 88% to 54% (p <0.005) but lesser decreases of factors I, II, V, VII and X. This apparent discrepancy was due to the appearance of an inhibitor of the extrinsic coagulation system, termed PEC (Protein after Extracorporeal Circulation). The mean plasma PEC level rose from 0.05 U/ml pre-surgery to 0.65 U/ml post-surgery (p <0.0005), and was accompanied by the appearance of additional proteins as evidenced by disc polyacrylamide gel electrophoresis of plasma fractions (p <0.0005). The observed increases of PEC, appearance of abnormal protein bands and concomitant increases of LDH and SGOT suggest that the release of an inhibitor of the coagulation system (similar or identical to PIVKA) may be due to hypoxic liver damage during extracorporeal circulation.


1967 ◽  
Vol 18 (03/04) ◽  
pp. 634-646 ◽  
Author(s):  
N Thurnherr

SummaryBlood clotting investigations have been executed in 25 patients who have undergone open heart surgery with extracorporeal circulation. A description of alterations in the activity of blood clotting factors, the fibrinolytic system, prothrombin consumption and platelets during several phases of the operation is given.


1997 ◽  
Vol 77 (05) ◽  
pp. 0920-0925 ◽  
Author(s):  
Bernd Pötzsch ◽  
Katharina Madlener ◽  
Christoph Seelig ◽  
Christian F Riess ◽  
Andreas Greinacher ◽  
...  

SummaryThe use of recombinant ® hirudin as an anticoagulant in performing extracorporeal circulation systems including cardiopulmonary bypass (CPB) devices requires a specific and easy to handle monitoring system. The usefulness of the celite-induced activated clotting time (ACT) and the activated partial thromboplastin time (APTT) for r-hirudin monitoring has been tested on ex vivo blood samples obtained from eight patients treated with r-hirudin during open heart surgery. The very poor relationship between the prolongation of the ACT and APTT values and the concentration of r-hirudin as measured using a chromogenic factor Ila assay indicates that both assays are not suitable to monitor r-hirudin anticoagulation. As an alternative approach a whole blood clotting assay based on the prothrombin-activating snake venom ecarin has been tested. In vitro experiments using r-hirudin- spiked whole blood samples showed a linear relationship between the concentration of hirudin added and the prolongation of the clotting times up to a concentration of r-hirudin of 4.0 µg/ml. Interassay coefficients (CV) of variation between 2.1% and 5.4% demonstrate the accuracy of the ecarin clotting time (ECT) assay. Differences in the interindividual responsiveness to r-hirudin were analyzed on r-hirudin- spiked blood samples obtained from 50 healthy blood donors. CV- values between 1.8% and 6% measured at r-hirudin concentrations between 0.5 and 4 µg/ml indicate remarkably slight differences in r-hirudin responsiveness. ECT assay results of the ex vivo blood samples linearily correlate (r = 0.79) to the concentration of r-hirudin. Moreover, assay results were not influenced by treatment with aprotinin or heparin. These findings together with the short measuring time with less than 120 seconds warrant the whole blood ECT to be a suitable assay for monitoring of r-hirudin anticoagulation in cardiac surgery.


Sign in / Sign up

Export Citation Format

Share Document