scholarly journals Evolution of disease transmission rate during the course of SARS-COV-2: Patterns and determinants

2020 ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

Abstract To date, many studies have argued the potential impact of public health interventions on flattening the epidemic curve of SARS-CoV-2. Most of them have focused on simulating the impact of interventions in a region of interest by manipulating contact patterns and key transmission parameters to reflect different scenarios. Our study looks into the evolution of the daily effective reproduction number during the epidemic via a stochastic transmission model. We found this measure (although model-dependent) provides an early signal of the efficacy of containment measures. This epidemiological parameter when updated in real-time can also provide better predictions of future outbreaks. Our results found a substantial variation in the effect of public health interventions on the dynamic of SARS-CoV-2 transmission over time and across countries, that could not be explained solely by the timing and number of the adopted interventions. This suggests that further knowledge about the idiosyncrasy of their implementation and effectiveness is required. Although sustained containment measures have successfully lowered growth in disease transmission, more than half of the 101 studied countries failed to maintain the effective reproduction number close to or below 1. This resulted in continued growth in reported cases. Finally, we were able to predict with reasonable accuracy which countries would experience outbreaks in the next 30 days.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

AbstractEpidemic models are being used by governments to inform public health strategies to reduce the spread of SARS-CoV-2. They simulate potential scenarios by manipulating model parameters that control processes of disease transmission and recovery. However, the validity of these parameters is challenged by the uncertainty of the impact of public health interventions on disease transmission, and the forecasting accuracy of these models is rarely investigated during an outbreak. We fitted a stochastic transmission model on reported cases, recoveries and deaths associated with SARS-CoV-2 infection across 101 countries. The dynamics of disease transmission was represented in terms of the daily effective reproduction number ($$R_t$$ R t ). The relationship between public health interventions and $$R_t$$ R t was explored, firstly using a hierarchical clustering algorithm on initial $$R_t$$ R t patterns, and secondly computing the time-lagged cross correlation among the daily number of policies implemented, $$R_t$$ R t , and daily incidence counts in subsequent months. The impact of updating $$R_t$$ R t every time a prediction is made on the forecasting accuracy of the model was investigated. We identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between interventions were associated with a reduction on the duration of outbreaks. The lagged correlation analysis revealed that increased policy volume was associated with lower future $$R_t$$ R t (75 days lag), while a lower $$R_t$$ R t was associated with lower future policy volume (102 days lag). Lastly, the outbreak prediction accuracy of the model using dynamically updated $$R_t$$ R t produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when $$R_t$$ R t was kept constant. Monitoring the evolution of $$R_t$$ R t during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths, since it provides an early signal of the efficacy of containment measures. Using updated $$R_t$$ R t values produces significantly better predictions of future outbreaks. Our results found variation in the effect of early public health interventions on the evolution of $$R_t$$ R t over time and across countries, which could not be explained solely by the timing and number of the adopted interventions.


Author(s):  
Katharina Hauck

Economics can make immensely valuable contributions to our understanding of infectious disease transmission and the design of effective policy responses. The one unique characteristic of infectious diseases makes it also particularly complicated to analyze: the fact that it is transmitted from person to person. It explains why individuals’ behavior and externalities are a central topic for the economics of infectious diseases. Many public health interventions are built on the assumption that individuals are altruistic and consider the benefits and costs of their actions to others. This would imply that even infected individuals demand prevention, which stands in conflict with the economic theory of rational behavior. Empirical evidence is conflicting for infected individuals. For healthy individuals, evidence suggests that the demand for prevention is affected by real or perceived risk of infection. However, studies are plagued by underreporting of preventive behavior and non-random selection into testing. Some empirical studies have shown that the impact of prevention interventions could be far greater than one case prevented, resulting in significant externalities. Therefore, economic evaluations need to build on dynamic transmission models in order to correctly estimate these externalities. Future research needs are significant. Economic research needs to improve our understanding of the role of human behavior in disease transmission; support the better integration of economic and epidemiological modeling, evaluation of large-scale public health interventions with quasi-experimental methods, design of optimal subsidies for tackling the global threat of antimicrobial resistance, refocusing the research agenda toward underresearched diseases; and most importantly to assure that progress translates into saved lives on the ground by advising on effective health system strengthening.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 220 ◽  
Author(s):  
Renato M. Cotta ◽  
Carolina P. Naveira-Cotta ◽  
Pierre Magal

A SIRU-type epidemic model is employed for the prediction of the COVID-19 epidemy evolution in Brazil, and analyze the influence of public health measures on simulating the control of this infectious disease. The proposed model allows for a time variable functional form of both the transmission rate and the fraction of asymptomatic infectious individuals that become reported symptomatic individuals, to reflect public health interventions, towards the epidemy control. An exponential analytical behavior for the accumulated reported cases evolution is assumed at the onset of the epidemy, for explicitly estimating initial conditions, while a Bayesian inference approach is adopted for the estimation of parameters by employing the direct problem model with the data from the first phase of the epidemy evolution, represented by the time series for the reported cases of infected individuals. The evolution of the COVID-19 epidemy in China is considered for validation purposes, by taking the first part of the dataset of accumulated reported infectious individuals to estimate the related parameters, and retaining the rest of the evolution data for direct comparison with the predicted results. Then, the available data on reported cases in Brazil from 15 February until 29 March, is used for estimating parameters and then predicting the first phase of the epidemy evolution from these initial conditions. The data for the reported cases in Brazil from 30 March until 23 April are reserved for validation of the model. Then, public health interventions are simulated, aimed at evaluating the effects on the disease spreading, by acting on both the transmission rate and the fraction of the total number of the symptomatic infectious individuals, considering time variable exponential behaviors for these two parameters. This first constructed model provides fairly accurate predictions up to day 65 below 5% relative deviation, when the data starts detaching from the theoretical curve. From the simulated public health intervention measures through five different scenarios, it was observed that a combination of careful control of the social distancing relaxation and improved sanitary habits, together with more intensive testing for isolation of symptomatic cases, is essential to achieve the overall control of the disease and avoid a second more strict social distancing intervention. Finally, the full dataset available by the completion of the present work is employed in redefining the model to yield updated epidemy evolution estimates.


2021 ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

Abstract BackgroundThis has been the first time in recent history when extreme measures that have deep and wide impact on our economic and social systems, such as lock downs and border closings, have been adopted at a global scale. These measures have been taken in response to the severe acute respiratory syndrome coronavirus SARS-CoV-2 pandemic, declared a Public Health Emergency of International Concern on 30 January 2020. Epidemic models are being used by governments across the world to inform social distancing and other public health strategies to reduce the spread of the virus. These models, which vary widely in their complexity, simulate interventions by manipulating model parameters that control social mixing, healthcare provision and other behavioral and environmental processes of disease transmission and recovery. The validity of these parameters is challenged by the uncertainty of the impact on disease transmission from socio-economic factors and public health interventions. Although sensitivity of the models to small variations in parameters are often carried out, the forecasting accuracy of these models is rarely investigated during an outbreak.MethodsWe fitted a stochastic transmission model on reported cases, recoveries and deaths associated with the infection of SARS-CoV-2 across 101 countries that had adopted at least one social-distancing policy by 15 May 2020. The dynamics of disease transmission was represented in terms of the daily effective reproduction number (Rt). Countries were grouped according to their initial temporal Rt patterns using a hierarchical clustering algorithm. We then computed the time lagged cross correlation among the daily number of policies implemented (policy volume), the daily effective reproduction number, and the daily incidence counts for each country. Finally, we provided forecasts of incidence counts up to 30-days from the time of prediction for each country repeated over 230 daily rolling windows from 15 May to 31 Dec 2020. The forecasting accuracy of the model when Rt is updated every time a new prediction is made was compared with the accuracy using a static Rt.FindingsWe identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between any two interventions were associated with a reduction on the duration of outbreaks (with correlation coefficients of -0.26 and 0.24 respectively). Sustained social distancing appeared to play a role in the prevention of the second transmission peak. By 15 May 2020, the average of the median Rt across examined countries had reduced from its peak of 20.5 (17.79, 23.20) to 1.3 (0.94, 1.74).The time lagged cross correlation analysis revealed that increased policy volume was associated with lower future Rt (the negative correlation was minimized when Rt lagged the policy volume by 75 days), while a lower Rt was associated with lower future policy volume (the positive correlation was maximized when Rt led by 102 days). Rt led the daily incidence counts by 78 days, with lower incidence counts being associated with lower future policy volume (the positive correlation was maximized when counts led the volume by 135 days). On the other hand, higher policy volume was not associated with lower incidence counts within a lag of up to 180 days.The outbreak prediction accuracy of the stochastic transmission model using dynamically updated Rt produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when Rt was kept constant. Prediction accuracy declined with forecasting time.InterpretationUnderstanding the evolution of the daily effective reproduction number during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths. This is because Rt provides an early signal of the efficacy of containment measures. Using updated Rt values produces significantly better predictions of future outbreaks. Our results found a substantial variation in the effect of early public health interventions on the evolution of Rt over time and across countries, which could not be explained solely by the timing and number of the adopted interventions. This suggests that further knowledge about the idiosyncrasy of the implementation and effectiveness thereof is required. Although sustained containment measures have successfully lowered growth rate of disease transmission, more than half of the studied countries failed to maintain an effective reproduction number close to or below 1. This resulted in continued growth in reported cases.


2019 ◽  
Author(s):  
Luisa Salazar-Vizcaya ◽  
Andrew Atkinson ◽  
Andreas Kronenberg ◽  
Catherine Plüss-Suard ◽  
Roger Kouyos ◽  
...  

AbstractBackgroundExtended-spectrum betalactamase (ESBL-) producing K. pneumoniae is one of the most common causes of infections with antimicrobial resistant bacteria worldwide. The spread of colonization of humans with this pathogen is on the rise. The future prevalence of colonization with ESBL-producing K. pneumoniae, and the potential of public health interventions to lower it, remain uncertain.MethodsBased on detailed data on antimicrobial consumption and susceptibility systematically recorded for over 13 years in a Swiss region, we developed a mathematical model to i) reconstruct the observed course of colonization with ESBL-producing K. pneumoniae; and ii) to assess the potential impact of public health interventions on future trends in colonization.ResultsSimulated prevalence of colonization with ESBL-producing K. pneumoniae stabilized in the near future when rates of antimicrobial consumption and in-hospital transmission remained stable in the main analyses (simulated prevalence in 2025 was 5.3% (5.0%-9.1%) in hospitals and 2.7% (2.1%-4.6%) in the community versus 5.6% (5.1%-9.5%) and 2.8% (2.2%-5.0%) in 2019). The largest changes in future prevalence were observed in simulations that assumed changes in overall antimicrobial consumption. When overall antimicrobial consumption was set to decrease by 50%, prevalence in 2025 declined by 89% in hospitals and by 84% in the community. A 50% decline in transmission rate within hospitals led to a reduction in prevalence of 43% in hospitals and of 13% in the community by 2025. Prevalence changed much less (≤9%) across scenarios with reduced carbapenem consumption. Assuming higher rates for the contribution from external sources of colonization, led to decreasing estimations of future prevalence in hospitals. While high uncertainty remains on the magnitude of these contribution, the best model fit suggested that as much as 46% (95% CI: 12%-96 %) of observed colonizations could be attributable to sources other than human-to-human transmission within the geographical setting (i.e., non-local transmission).ConclusionsThis study suggests that overall antimicrobial consumption will be, by far, the most powerful driver of future prevalence and that a large fraction of colonizations could be attributed to non-local transmission.


2021 ◽  
Author(s):  
Sylvia K. Ofori ◽  
Jessica S. Schwind ◽  
Kelly L. Sullivan ◽  
Benjamin J Cowling ◽  
Gerardo Chowell ◽  
...  

The study characterized the transmission of COVID-19 in Ghana by estimating the time-varying reproduction number (Rt) and exploring the effect of various public health interventions at the national and regional levels. The median Rt for Ghana and six out of sixteen regions dropped from greater than 1 in March 2020 to less than 1 in September but increased above 1 in January 2021. The relaxation of movement restrictions and religious gatherings were not associated with increased Rt in the regions with lower case burdens. However, Rt increased in most regions after schools were reopened in January 2021. In a regression analysis, we estimated that the per-capita cumulative case count increased with population size. Findings indicated the public health interventions reduced the Rt at the national level while at the regional levels, the Rt fluctuated, and the extent of fluctuation varied across regions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fatima Khadadah ◽  
Abdullah A. Al-Shammari ◽  
Ahmad Alhashemi ◽  
Dari Alhuwail ◽  
Bader Al-Saif ◽  
...  

Abstract Background Aggressive non-pharmaceutical interventions (NPIs) may reduce transmission of SARS-CoV-2. The extent to which these interventions are successful in stopping the spread have not been characterized in countries with distinct socioeconomic groups. We compared the effects of a partial lockdown on disease transmission among Kuwaitis (P1) and non-Kuwaitis (P2) living in Kuwait. Methods We fit a modified metapopulation SEIR transmission model to reported cases stratified by two groups to estimate the impact of a partial lockdown on the effective reproduction number ($$ {\mathcal{R}}_e $$ R e ). We estimated the basic reproduction number ($$ {\mathcal{R}}_0 $$ R 0 ) for the transmission in each group and simulated the potential trajectories of an outbreak from the first recorded case of community transmission until 12 days after the partial lockdown. We estimated $$ {\mathcal{R}}_e $$ R e values of both groups before and after the partial curfew, simulated the effect of these values on the epidemic curves and explored a range of cross-transmission scenarios. Results We estimate $$ {\mathcal{R}}_e $$ R e at 1·08 (95% CI: 1·00–1·26) for P1 and 2·36 (2·03–2·71) for P2. On March 22nd, $$ {\mathcal{R}}_e $$ R e for P1 and P2 are estimated at 1·19 (1·04–1·34) and 1·75 (1·26–2·11) respectively. After the partial curfew had taken effect, $$ {\mathcal{R}}_e $$ R e for P1 dropped modestly to 1·05 (0·82–1·26) but almost doubled for P2 to 2·89 (2·30–3·70). Our simulated epidemic trajectories show that the partial curfew measure greatly reduced and delayed the height of the peak in P1, yet significantly elevated and hastened the peak in P2. Modest cross-transmission between P1 and P2 greatly elevated the height of the peak in P1 and brought it forward in time closer to the peak of P2. Conclusion Our results indicate and quantify how the same lockdown intervention can accentuate disease transmission in some subpopulations while potentially controlling it in others. Any such control may further become compromised in the presence of cross-transmission between subpopulations. Future interventions and policies need to be sensitive to socioeconomic and health disparities.


2021 ◽  
Author(s):  
Jianhong Wu ◽  
Francesca Scarabel ◽  
Bushra Majeed ◽  
Nicola Luigi Bragazzi ◽  
James Orbinski

Sexual Health ◽  
2012 ◽  
Vol 9 (3) ◽  
pp. 272 ◽  
Author(s):  
Kellie S. H. Kwan ◽  
Carolien M. Giele ◽  
Heath S. Greville ◽  
Carole A. Reeve ◽  
P. Heather Lyttle ◽  
...  

Objectives To describe the epidemiology of congenital and infectious syphilis during 1991–2009, examine the impact of public health interventions and discuss the feasibility of syphilis elimination among Aboriginal people in Western Australia (WA). Methods: WA congenital and infectious syphilis notification data in 1991–2009 and national infectious syphilis notification data in 2005–2009 were analysed by Aboriginality, region of residence, and demographic and behavioural characteristics. Syphilis public health interventions in WA from 1991–2009 were also reviewed. Results: During 1991–2009, there were six notifications of congenital syphilis (50% Aboriginal) and 1441 infectious syphilis notifications (61% Aboriginal). During 1991–2005, 88% of notifications were Aboriginal, with several outbreaks identified in remote WA. During 2006–2009, 62% of notifications were non-Aboriginal, with an outbreak in metropolitan men who have sex with men. The Aboriginal : non-Aboriginal rate ratio decreased from 173 : 1 (1991–2005) to 15 : 1 (2006–2009). Conclusions: These data demonstrate that although the epidemiology of syphilis in WA has changed over time, the infection has remained endemic among Aboriginal people in non-metropolitan areas. Given the continued public health interventions targeted at this population, the limited success in eliminating syphilis in the United States and the unique geographical and socioeconomic features of WA, the elimination of syphilis seems unlikely in this state.


2021 ◽  
Vol 47 (7/8) ◽  
pp. 329-338
Author(s):  
Jianhong Wu ◽  
Francesca Scarabel ◽  
Zachary McCarthy ◽  
Yanyu Xiao ◽  
Nicholas H Ogden

Background: When public health interventions are being loosened after several days of decline in the number of coronavirus disease 2019 (COVID-19) cases, it is of critical importance to identify potential strategies to ease restrictions while mitigating a new wave of more transmissible variants of concern (VOCs). We estimated the necessary enhancements to public health interventions for a partial reopening of the economy while avoiding the worst consequences of a new outbreak, associated with more transmissible VOCs. Methods: We used a transmission dynamics model to quantify conditions that combined public health interventions must meet to reopen the economy without a large outbreak. These conditions are those that maintain the control reproduction number below unity, while accounting for an increase in transmissibility due to VOC. Results: We identified combinations of the proportion of individuals exposed to the virus who are traced and quarantined before becoming infectious, the proportion of symptomatic individuals confirmed and isolated, and individual daily contact rates needed to ensure the control reproduction number remains below unity. Conclusion: Our analysis indicates that the success of restrictive measures including lockdown and stay-at-home orders, as reflected by a reduction in number of cases, provides a narrow window of opportunity to intensify case detection and contact tracing efforts to prevent a new wave associated with circulation of more transmissible VOCs.


Sign in / Sign up

Export Citation Format

Share Document