scholarly journals Design and Simulation of Physical Layer Security for Next Generation Intelligent Optical Networks

Author(s):  
valarmathi marudhai ◽  
Shanthi Prince ◽  
Shayna Kumari

Abstract With the latest technological advancements and attractive features of next generation intelligent optical networks such as high bandwidth, low power consumption, and low transmission loss, etc., they have been considered as most viable solution to satisfy promptly growing bandwidth demands. However, main optical network components bring forth a set of security challenges and reliability issues, accompanied by new vulnerabilities within the network. This paper proposes a new design for an optical encryption and decryption method for enhancing optical network security using p-i-n photodiode which generates Pseudo Random Binary Sequence (PRBS) as a shot noise fluctuations and wavelength converter based design using Semiconductor Optical Amplifier (SOA) based XOR gate which utilizes Cross-Phase Modulation (XPM). The system performance based on Bit Error Rate (BER) and Q factor are analyzed at different data rates for different link lengths up to 100 km using OptiSystem. It is observed that error free transmission with a BER of 10-12 is achieved a data rate of 10Gbps for a link length of only 30 Km for the system with PIN photodiode’s shot noise being used for PRBS sequence generation. However, wavelength conversion based system enables transmission of signal at 10Gbps signal up to a link length of 90Km.

Author(s):  
Calvin C.K. Chan

Wavelength division multiplexed passive optical network has emerged as a promising solution to support a robust and large-scale next generation optical access network. It offers high-capacity data delivery and flexible bandwidth provisioning to all subscribers, so as to meet the ever-increasing bandwidth requirements as well as the quality of service requirements of the next generation broadband access networks. The maturity and reduced cost of the WDM components available in the market are also among the major driving forces to enhance the feasibility and practicality of commercial deployment. In this chapter, the author will provide a comprehensive discussion on the basic principles and network architectures for WDM-PONs, as well as their various enabling technologies. Different feasible approaches to support the two-way transmission will be discussed. It is believed that WDM-PON is an attractive solution to realize fiber-to-the-home (FTTH) applications.


2011 ◽  
Vol 474-476 ◽  
pp. 1479-1482
Author(s):  
Ning Zhang

In this paper, we analyze the optical network with wavelength conversion, and discuss the architecture of network with wavelength converter in its node. The optical cross connects technology for wavelength division multiplexing (WDM) is rapidly developing. Wavelength conversion is one of the key techniques for switch WDM optical networks. The wavelength conversion technology can achieve wavelength reuse, decrease wavelength competition, enhance network flexibility and scalability, and simplify network structure and management. The results show that If these cross-connectors feature integrated with wavelength conversion, network will be better able to play the full potential of WDM optical networks.


Author(s):  
Hussein T. Mouftah

Optical switches and wavelength converters are recognized as two of the most important DWDM system components in future all-optical networks. Optical switches perform the key functions of flexible routing, reconfigurable optical cross-connect (OXC), network protection and restoration, etc. in optical networks. Wavelength Converters are used to shift one incoming wavelength to another outgoing wavelength when this needs to be done.  Always residing in optical switches, they can effectively alleviate the blocking probability and help solve contention happening at the output port of switches. The deployment of wavelength converters within optical switches provides robust routing, switching and network management in optical layer, which is critical to the emerging all-optical Internet. However, the high cost of wavelength converters at current stage of manufacturing technology has to be taken into consideration when we design node architectures for an optical network. Our research explores the efficiency of wavelength converters in a long-haul optical network at different degrees of traffic load by running a simulation. Then, we propose a new cost-effective way to optimally design wavelength-convertible switch so as to achieve higher network performance while still keeping the total network cost down. Meanwhile, the routing and wavelength assignment (RWA) algorithm used in the research is designed to be a generic one for both large-scale and small-scale traffic. Removing the constraint on the traffic load makes the RWA more adaptive and robust. When this new RWA works in conjunction with a newly introduced concept of wavelength-convertible switches, we shall explore the impact of large-scale traffic on the role of wavelength converter so as to determine the method towards optimal use of wavelength convertible switches for all-optical networks.  


2020 ◽  
Vol 10 (24) ◽  
pp. 8960
Author(s):  
Xin Rui Chen ◽  
Guang Yong Chu

We investigated the application of a semiconductor optical amplifier (SOA) and an SOA electro-absorption modulator (SOA-EAM) as attractive, low-cost solutions in passive optical networks (PONs). The main characteristics of an SOA with optimal performance for phase and amplitude modulation were tested. Additionally, a 10 Gb/s bidirectional transmission with an optical network unit (ONU) transmitter integrated with a distributed feedback (DFB) laser, electro-absorption modulator (EAM), and SOA was designed. The upstream (US) and downstream (DS) receiver sensitivities at the forward error correction (FEC) level reached −29.5 dBm and −33.5 dBm for back-to-back (BtB) fiber and −28.9 dBm and −33.1 dBm for 20 km fiber. For multichannel transmission, the US receiver sensitivities reached −28.8 dBm and −28.2 dBm for BtB and 20 km fibers, and the DS receiver sensitivities reached −33 dBm and −32.6 dBm for BtB and 20 km fibers, respectively.


Author(s):  
P. Selvaraj ◽  
V. Nagarajan

The IP-based data networks and optical networks have been managed independently with layered protocol stack approach. Both of them were over-provisioned to manage any traffic anomalies and failures. The next generation optical network is expected to handle the needs of the emerging applications in a cost-effective way while satisfying the required QoT. In such scenario, the intents of the application layer must be accounted in the path computation. There is no single path computation algorithm exists which behave optimally under varying traffic conditions. Hence the need for the intent-driven automated algorithm selection was identified. The authors have phrased this intent specific lightpath provisioning problem as the path computation algorithm selection problem. An algorithm selection methodology was proposed with the study of the least congested path in ONOS based software defined controller environment. This approach is claimed as an amenable candidate for the next generation software-defined optical network.


Sign in / Sign up

Export Citation Format

Share Document