PDK4-Mediated Metabolic Reprogramming Promotes Rituximab Resistance in Diffuse Large B-Cell Lymphoma Via Negative Regulation of MS4A1/CD20

Author(s):  
Duanfeng Jiang ◽  
Qiuyu Mo ◽  
Xiaoying Sun ◽  
Xiaotao Wang ◽  
Min Dong ◽  
...  

Abstract Background: Diffuse large B cell lymphoma (DLBCL) heterogeneity promotes the recurrence and anti-CD20-based therapeutic resistance. In previous studies, it has been demonstrated that the downregulation of MS4A1/CD20 expression after chemoimmunotherapy with rituximab can lead to rituximab resistance. However, the the mechanisms of CD20-loss remains unknown. Methods: The expression levels of PDK4 were investigated in DLBCL patients and cell lines by RNA-seq, qRT-PCR, western blotting and immunofluorescence analysis. Lentiviral infection was used to regulate the level of PDK4 in DLBCL cells. The effects of PDK4 on apoptosis, drug sensitivity and proliferation of DLBCL cells were evaluated by flow cytometry and cell-counting kit-8 (CCK-8) assay, as well as being assessed in a murine model. Cell metabolism was conducted by measurement of glucose consumption, lactate production, ATP levels, ECAR and OCR with corresponding assay kit. Results: Our data showed that PDK4 expression levels elevated significantly in DLBCL cells derived from both the patients and cell lines with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone regimen) resistant. We further found that the overexpression of PDK4 in DLBCL cells can lead to cell proliferation and rituximab resistance both in vitro and in vivo. Furthermore, the loss of PDK4 expression or treatment with the PDK4 inhibitor dichloroacetate is effective in increasing the rituximab-induced cell apoptosis in DLBCL cells. According to the mechanism studies, PDK4 mediated a metabolic shift that the main energy source was changed from OXPHOS to glycolysis. More importantly, with the knockdown or overexpression of PDK4 in DLBCL cells leads to a reverse MS4A1/CD20 expression. Conclusion: Our data identify a metabolic reprogramming role of PDK4 in rituximab resistance of DLBCL and highlight the unique function of PDK4 as an attractive therapeutic target.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5424-5424
Author(s):  
Nicolle H Rekers ◽  
Laura M Moesbergen ◽  
Nathalie J Hijmering ◽  
Wim Vos ◽  
Joost Oudejans ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) remains eventually fatal in 30-40% of the patients, despite intensive chemotherapy (CHOP) in combination with rituximab. A subgroup of chemotherapy-refractory DLBCL is characterized by high expression levels of both pro- and anti-apoptotic genes, including MCL-1. Alternative splicing of the MCL-1 gene results in a Bcl-2-like anti-apoptotic MCL-1L protein and a BH3-only pro-apoptotic MCL-1S protein. In the present study, we investigated if a switch in alternative splicing of MCL-1 is involved in apoptosis-resistance in primary lymphoma cells of 20 DLBCL patients and 5 DLBCL cell lines. RT-MLPA analysis revealed that MCL-1L and MCL-1S are both expressed in all tested DLBCL samples and DLBCL cell lines, however expression levels varied strongly. An imbalance between the expression levels of MCL-1L and MCL-1S to an anti-apoptotic status was observed in DLBCL patient cells and DLBCL cell lines, especially in activated B-cell like (ABC)-DLBCL, compared to tonsillar germinal center B-cells. MCL-1 mRNA expression was confirmed at protein level using immunohistochemistry and western blot analysis. Co-immunoprecipitation demonstrated that MCL-1L inhibited apoptosis by binding of Bak in MCL-1L positive DLBCL cell lines. Knockdown of MCL-1L with siRNA analysis resulted in induction of apoptosis in both GCB- and ABC-DLBCL cell lines and also in increased sensitivity to the conventional chemotherapeutical drugs etoposide. Downregulation of MCL-1L using flavopiridol induced apoptotic cell death of MCL-1L-positive DLBCL cells with low Bcl-2 expression. In summary, a switch in alternative splicing of MCL-1 occurs in a subgroup of DLBCL leading to an increase in the level of anti-apoptotic MCL-1L that contributes to therapy-resistance. These preclinical data suggest that targeting of MCL-1L might be a therapeutic option for MCL-1L positive DLBCL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4495-4495 ◽  
Author(s):  
Luciano Cascione ◽  
Eugenio Gaudio ◽  
Elena Bernasconi ◽  
Chiara Tarantelli ◽  
Andrea Rinaldi ◽  
...  

Abstract Background. Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma, accounting for 30%-40% of all cases. Despite a major improvement in the cure rate, a large number of DLBCL patients lack therapeutic options. Aberrant changes in histone modifications, DNA methylation and expression levels of non-coding RNA, including microRNA (miRNA), contribute to DLBCL pathogenesis and represent potential therapeutic targets. OTX015 targets bromodomain and extra-terminal (BET) proteins, which are epigenetic readers contributing to gene transcription. It has shown preclinical activity in hematologic and solid tumor models (Gaudio et al, AACR 2014; Noel et al, EORTC-NCI-AACR 2013) and promising early results in an ongoing phase I study (Herait et al, AACR 2014; NCT01713582). To better understand the mechanism of action of OTX015, we studied molecular changes induced by this compound in DLBCL cell lines. Methods. Total RNA was extracted from 2 DLBCL cell lines, the germinal center B-cell (GCB) type DOHH2 and activated B-cell-like (ABC)-type SU-DHL-2, following treatment with 500 nM OTX015 or DMSO for 4h or 8h. RNA samples were labeled with cyanine-3 dye using the Agilent microRNA Complete Labeling System & Hyb Kit and hybridized to the Agilent Human microRNA microarray v.3. Raw expression values were obtained with Agilent Feature Extraction Software, log-transformed and normalized by the quantile method. Data were filtered to exclude relatively invariant features and those below the detection threshold. Limma (Linear Models for Microarray data analysis) was employed using R/Bioconductor and the filtered dataset. Baseline miRNA profiling was obtained from 22 DLBCL cell lines with the Nanostring nCounter Human v2 miRNA Expression Assay kit. Baseline gene expression profiling (GEP) was obtained in these cell lines with the Illumina HumanHT-12 v4 Expression BeadChip. Selected miRNA changes were validated by real-time PCR. Validated miRNA targets were retrieved using the miRWalk database (Dweep et al, 2011). Gene Set Enrichment Analysis (GSEA) software was used to assess enrichment of miRNA targets in the GEP datasets. Results. miRNA profiling of the GCB and ABC DLBCL cell lines exposed to OTX015 identified four downregulated miRNAs and eight which were upregulated. Among them, the oncomirs miR-92a-1-5p (log2 FC, -2.01; P=0.004) and miR-21-3p (log2 FC, -0.37; P=0.0045) were downregulated, while the tumor suppressor miR-96-5p (log2 FC, 0.39; P=0.041) was upregulated. Interestingly, changes of these miRNAs matched GEP variations of validated target genes (e.g., miR-92a-1-5p: CDKN1A, log2 FC, 0.81, CDKN2A, log2 FC, 0.81; miR-96-5p: MYC, log2 FC, -0.57, MYD88, log2 FC, -0.35). We then evaluated if these three miRNAs play a role in OTX015-sensitivity by obtaining baseline miRNA and GEP profiling data in 22 DLBCL cell lines. Compared to 8 cell lines with lower sensitivity to OTX015 (IC50 >500 nM), the 14 sensitive cell lines (IC50 <500 nM) presented lower miR-96-5p expression levels (log ratio, 2.12; P=0.026) and their GEPs were significantly enriched for validated miR-96-5p targets (normalized enrichment score, 1.4; P=0.026), suggesting miR-96-5p levels may predict response to OTX015. Conclusions. Changes in the expression levels of biologically relevant miRNAs may contribute to response to OTX015. miR-92a-1-5p, the oncomir which was most strongly downregulated by OTX015, is a member of the MYC target MIR17HG (mir-17-92 cluster), involved in the pathogenesis and chemo-resistance of lymphomas, mainly contributing to PI3K/AKT/mTOR pathway activation. Since the cell cycle transcriptional regulator E2F1 is targeted by mir-17-92, OTX015 may contribute to cell cycle arrest and to downregulation of the E2F1 target gene reported with BRD inhibitors in DLBCL cell lines. miR-21-3p, also downregulated by OTX015, is a well-known oncomir, and forced miR-21-3p expression in transgenic mice results in the development of leukemias and lymphomas. miR-96-5p, upregulated by OTX015, targets oncogenes such as RAS or MYC, and low expression has been reported in mantle cell lymphoma. Interestingly, low miR-96-5p baseline levels were associated with higher sensitivity to OTX015, an observation meriting validation in other tumor models and evaluation in clinical studies. Disclosures Stathis: Oncoethix SA: Consultancy, Research Funding. Riveiro:Oncoethix SA: Consultancy, Research Funding; Oncology Therapeutic Development: Employment. Bertoni:Oncoethix SA: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3645-3645
Author(s):  
Magdalena Klanova ◽  
Ladislav Andera ◽  
Jan Soukup ◽  
Brazina Jan ◽  
Jan Svadlenka ◽  
...  

Abstract Introduction: Diffuse large B-cell lymphoma (DLBCL) represents the most prevalent type of B-cell non-Hodgkin lymphomas (B-NHL) in the Western hemisphere. While BCL2 gene deregulation was repeatedly associated with poor prognosis, the role of MCL1 in the biology of DLBCL remains largely unknown. ABT199 is a highly-selective inhibitor of BCL2 protein currently evaluated in clinical trials. Homoharringtonine (HHT) is a plant alkaloid and as a semisynthetic compound (omacetaxine) it was approved for the treatment of relapsed chronic myelogenous leukemia (CML). Anti-tumor activity of HHT includes downregulation of the anti-apoptotic protein MCL1. Aim: The aim of the project was to evaluate the preclinical anti-lymphoma efficacy of BCL2 and MCL1-targeting agents ABT199 and HHT in DLBCL. Methods: Immunophenotype of primary DLBCL samples was determined by immunohistochemistry (IHC) using the Hans algorithm. Sensitivity of DLBCL cell lines to ABT199 and HHT was determined by Annexin V-based apoptotic assay and WST8-based cell proliferation assay. DLBCL clones with downregulation of selected anti-apoptotic proteins were derived using pLKO1-based lentiviral particles containing shRNAs against BCL2, BCL-XL and MCL1. For upregulation, BCL2, BCL-XL and MCL1 were cloned in the lentiviral expression vector pCDHNeo and the prepared lentiviral particles were used for the transduction of DLBCL cell lines. Results: We analyzed molecular mechanisms of cytotoxic activity of HHT in 7 DLBCL cell lines, and confirmed decreased expression of MCL1 protein in all cases. By semi-quantitative protein expression analysis (western blot or IHC) we demonstrated that BCL-XL and MCL1 were detectable in all DLBCL cell lines (n=18) and primary samples (n=114, GCB=51, ABC=63), while BCL2 was not detectable in 6 out of 18 DLBCL cell lines and 32 out of 114 primary DLBCL samples. 8 out of 12 BCL2-positive DLBCL cell lines were sensitive to 1 microM ABT199 (i.e. did not survive 1 microM ABT199 by standard proliferation assay). In contrary, 6 out of 6 BCL2-negative DLBCL cell lines were resistant to 1 microM ABT199. 11 out of 12 BCL2-positive DLBCL cell lines were sensitive to 30 nM HHT (considered a steady-state plasma level in CML patients treated with HHT). 5 out of 6 BCL2-negative DLBCL cell lines were sensitive to 30 nM HHT. Significant drug synergism between ≤1 microM ABT199 and ≤ 30 nM HHT was observed in 8 out of 12 BCL2-positive, but only in 1 out of 6 BCL2-negative DLBCL cell lines. We demonstrated that high expression of BCL2 positively correlated with sensitivity to ABT-199, irrespective of expression levels of BCL-XL and MCL1. Expression levels of BCL2 and BCL-XL negatively correlated with sensitivity to HHT. Expression level of MCL1 did not correlate with sensitivity to HHT. Both targeted downregulation and transgenic overexpression of BCL-XL in selected DLBCL cell lines confirmed that the expression of BCL-XL negatively correlates with sensitivity to HHT (but not to ABT199). While increase in sensitivity to HHT was observed in 3 out of 3 DLBCL cell lines with targeted knock-down of BCL2, increase in sensitivity to ABT199 was observed only in 1 out of these 3 DLBCL cell lines. Targeted knockdown of MCL1 was associated with increased sensitivity to HHT in 1 out of 2 DLBCL cell lines, but with no change of sensitivity to ABT199. Conclusions: HHT is a promising anti-DLBCL agent in both BCL2-positive and BCL2-negative cases. ABT199, as a single-agent or in combination with HHT, effectively eliminates BCL2-positive DLBCL cells. Based on the observed data two biological categories of DLBCL might be assumed: BCL2-dependent (ABT199-sensitive, HHT-sensitive) and MCL1-dependent (ABT199-resistant, HHT-sensitive) DLBCL. Grant support: IGA-MZ: NT13201-4/2012, GACR14-19590S, UNCE 204021, SVV-2013-266509, PRVOUK P24/LF1/3, GA-UK 1270214 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4336-4336
Author(s):  
Minglang Zhan ◽  
Xiaolei Wei ◽  
Weimin Huang ◽  
Yongqiang Wei ◽  
Ru Feng

Abstract Background: Pyruvate kinase muscle isoenzyme 2 (PKM2) is a key enzyme in aerobic glycolysis and thought to contribute to cancer cell metabolic reprogramming and regulating the reactive oxygen species (ROS). Doxorubicin has been showed to induced activated-B cell types diffuse large B-cell lymphoma (ABC-DLBCL) cells death by ROS accumulation. Our purpose was to evaluate whether PKM2 inhibition could enhance the sensitivity of doxorubicin in ABC-DLBCL. Methods: MTT assay was used to evaluate the proliferation of 2 ABC-DLBCL cell lines by treated with PKM2 inhibitor, PKM2 shRNA and doxorubicin. Apoptosis were detected by FCM after staining with Annexin V/SYTOX Green. Western Blot was used to evaluated the expression of PARP, Mcl1, Bcl2, Bax, Bim, p38 and JNK in ABC-DLBCL cells treated with PKM2 inhibition, PKM2 shRNA and doxorubicin. Results: PKM2 expression was found in both U2932 and SuDHL2 cell lines. Both PKM2 inhibitor and doxorubicin could inhibit the proliferation and induce apoptosis in ABC-DLBCL cell lines. PKM2 inhibitor could enhance the doxorubicin-induced apoptosis. ShRNA was used to knock down the PKM2 expression in ABC-DLBCL cell lines and PKM2 KD cell lines were more sensitive to doxorubicin. PKM2 inhibition could increase the expression of cleaved PARP, Bax, Bim, p38 and JNK as well as decrease Mcl1 and Bcl2 expression Conclusions: PKM2 inhibition could sensitize ABC-DLBCL cell lines to the cytotoxic effects of doxorubicin. Key words: PKM2, Doxorubicin, Diffuse large B cell lymphoma Disclosures No relevant conflicts of interest to declare.


Author(s):  
Jing-Ran Sun ◽  
Xiao Zhang ◽  
Ya Zhang

Abstract Objective We explored the role and mechanism of miR-214 involvement in the progression of diffuse large B-cell lymphoma (DLBCL). Methods The expression levels of miR-214 and PD-L1 in human DLBCL cell lines and in tissue samples from patients with DLBCL were determined using quantitative RT-PCR. The dual-luciferase reporter assay was employed to determine the correlation between the expressions of miR-214 and PD-L1. Cell viability, invasiveness and apoptosis were respectively examined in cells of the DLBCL line OCI-Ly3 using CCK-8, transwell and flow cytometry assays. The expression level of PD-L1 was determined via immunoblotting. Inflammatory cytokine secretion was determined via enzyme-linked immune sorbent assay (ELISA). Results miR-214 was downregulated and PD-L1 was upregulated in DLBCL tissues and cell lines in comparison to normal adjacent tissues or normal B-cell. This indicates a negative correlation in the expression levels. Overexpression of miR-214 inhibited cell viability and invasion and induced apoptosis of OCI-Ly3 cells. Moreover, miR-214 was shown to target PD-L1 mRNA by binding to its 3′-untranslated region (UTR). Knockdown of PD-L1 attenuated the malignant phenotype of OCI-Ly3 cells. Overexpression of miR-214 inhibited tumor growth by targeting PD-L1 in vivo. Conclusion By targeting PD-L1, miR-214 regulates the progression of DLBCL in vitro and in vivo.


2017 ◽  
Vol 35 ◽  
pp. 154-154
Author(s):  
A. Kuhnl ◽  
R. Shaikh ◽  
D. Cunningham ◽  
N. Counsell ◽  
S. Barrans ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Danxia Zhu ◽  
Cheng Fang ◽  
Wenting He ◽  
Chen Wu ◽  
Xiaodong Li ◽  
...  

We investigated the role of miR-181a in diffuse large B-cell lymphoma (DLBCL) and its potential target genes. miR-181a levels were lower in activated B-cell- (ABC-) like DLBCL cells than that in germinal center B-cell- (GCB-) like DLBCL cells. Overexpression of miR-181a in ABC-like DLBCL cell lines (OCI-LY10 and U2932) resulted in G0/G1 cell cycle arrest, increased apoptosis, and decreased invasiveness. miRNA target prediction programs (miRanda, TargetScan, and miRDB) identified caspase recruitment domain-containing protein 11 (CARD11) as a putative miR-181a target. CARD11 mRNA and protein levels were higher in the ABC-like DLBCL than that in GCB-like DLBCL. Moreover, CARD11 mRNA and protein levels were downregulated in the OCI-LY10 and U2932 cell lines overexpressing miR-181a. Dual luciferase reporter assays confirmed the miR-181a binding site in the CARD11 3′UTR region. OCI-LY10 and U2932 cells transfected with a CARD11 expression vector encoding miR-181a with a mutated binding site showed higher CARD11 protein levels, cell viability, G2/M phase cells, and invasiveness compared to those transfected with a wild-type CARD11 expression vector. Nude mice xenografted with OCI-LY10 cells with overexpressed wild-type miR-181a generated smaller tumors compared to those with overexpressed mutated binding site of CARD11 3′UTR and miR-181a. These results indicate that miR-181a inhibits ABC-like DLBCL by repressing CARD11.


2019 ◽  
Vol 116 (34) ◽  
pp. 16981-16986 ◽  
Author(s):  
Claudio Scuoppo ◽  
Jiguang Wang ◽  
Mirjana Persaud ◽  
Sandeep K. Mittan ◽  
Katia Basso ◽  
...  

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


2019 ◽  
Vol 2 (4) ◽  
pp. 246-258
Author(s):  
Prashanthi Dharanipragada ◽  
Nita Parekh

Abstract Diffuse large B-cell lymphoma (DLBCL) is the aggressive form of haematological malignancies with relapse/refractory in ~ 40% of cases. It mostly develops due to accumulation of various genetic and epigenetic variations that contribute to its aggressiveness. Though large-scale structural alterations have been reported in DLBCL, their functional role in pathogenesis and as potential targets for therapy is not yet well understood. In this study we performed detection and analysis of copy number variations (CNVs) in 11 human DLBCL cell lines (4 activated B-cell–like [ABC] and 7 germinal-centre B-cell–like [GCB]), that serve as model systems for DLBCL cancer cell biology. Significant heterogeneity observed in CNV profiles of these cell lines and poor prognosis associated with ABC subtype indicates the importance of individualized screening for diagnostic and prognostic targets. Functional analysis of key cancer genes exhibiting copy alterations across the cell lines revealed activation/disruption of ten potentially targetable immuno-oncogenic pathways. Genome guided in silico therapy that putatively target these pathways is elucidated. Based on our analysis, five CNV-genes associated with worst survival prognosis are proposed as potential prognostic markers of DLBCL.


Sign in / Sign up

Export Citation Format

Share Document