scholarly journals T cell phenotypes associated with insulin resistance: Results from the Berlin Aging Study II

2020 ◽  
Author(s):  
Julia Sbierski-Kind ◽  
David Goldeck ◽  
Nikolaus Buchmann ◽  
Joachim Spranger ◽  
Hans-Dieter Volk ◽  
...  

Abstract Background Obesity is associated with chronic low-grade inflammation leading to metabolic and cardiovascular diseases, but a subset of obese individuals is considered insulin sensitive (IS) and metabolically healthy. The underlying pathophysiologic mechanisms remain elusive and clinical studies on the relationship between inflammatory markers and metabolically healthy obesity (MHO) are scarce. Methods In this cross-sectional analysis, we included a sample of 437 older participants (60-84 years) from the Berlin Aging Study II (BASE-II). Peripheral blood mononuclear cells were isolated, immune cell subsets were analyzed with multiparameter flow cytometry and systemic cytokine levels were measured. Immune cell parameters were correlated with metabolic measures and multiple linear regression analysis was conducted and adjusted for various demographic and clinical factors. Results We found that frequencies of naïve and memory CD4+ and CD8+ T cells inversely correlated with measures for insulin sensitivity in the older population. Moreover, the percentages of naïve CD4+ and CD8+ T cells were significantly higher, whereas activated T cells and IL-6 levels were lower in IS compared to insulin resistant (IR) obese individuals. The percentages of naïve CD4+ and CD8+ T cells were predictive for impaired insulin sensitivity (ß=0.16, p=0.01 and ß=0.11, p=0.04), and the association of naïve CD4+ T cells with insulin sensitivity persisted after multivariate adjustment (ß=0.14, p=0.02). Conclusions These findings support the hypothesis that parameters of systemic inflammation can differentiate IS from IR obese individuals that are at higher risk for cardiometabolic diseases and may have clinical implications with regard to obesity treatment stratification. Trial registration: DRKS00009277. Registered 31 August 2015 - Retrospectively registered, https://www.base2.mpg.de/de

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Julia Sbierski-Kind ◽  
David Goldeck ◽  
Nikolaus Buchmann ◽  
Joachim Spranger ◽  
Hans-Dieter Volk ◽  
...  

Abstract Background Obesity is associated with chronic low-grade inflammation leading to metabolic and cardiovascular diseases, but a subset of obese individuals is considered insulin sensitive (IS). The underlying pathophysiologic mechanisms remain elusive and clinical studies on the relationship between inflammatory markers and metabolically healthy obesity (MHO) are scarce. Methods In this cross-sectional analysis, we included a sample of 437 older participants (60–84 years) from the Berlin Aging Study II (BASE-II). Peripheral blood mononuclear cells were isolated, immune cell subsets were analyzed with multiparameter flow cytometry and systemic cytokine levels were measured. Immune cell parameters were correlated with metabolic measures and multiple linear regression analysis was conducted and adjusted for various demographic and clinical factors. Results We found that frequencies of naïve and memory CD4+ and CD8+ T cells inversely correlated with measures for insulin sensitivity in the older population. Moreover, the percentages of naïve CD4+ and CD8+ T cells were significantly higher, whereas activated T cells and IL-6 levels were lower in IS compared to insulin resistant (IR) obese individuals. The percentages of naïve CD4+ and CD8+ T cells were predictive for impaired insulin sensitivity (ß = 0.16, p = 0.01 and ß = 0.11, p = 0.04), and the association of naïve CD4+ T cells with insulin sensitivity persisted after multivariate adjustment (ß = 0.14, p = 0.02). Conclusions These findings support the hypothesis that parameters of systemic inflammation can differentiate IS from IR obese individuals that are at higher risk for cardiometabolic diseases and may have clinical implications with regard to obesity treatment stratification. Trial registration DRKS00009277. Registered 31 August 2015 - Retrospectively registered.


2020 ◽  
Author(s):  
Julia Sbierski-Kind ◽  
David Goldeck ◽  
Nikolaus Buchmann ◽  
Joachim Spranger ◽  
Hans-Dieter Volk ◽  
...  

Abstract BackgroundObesity is associated with chronic low-grade inflammation leading to metabolic and cardiovascular diseases, but a subset of obese individuals is considered insulin sensitive (IS). The underlying pathophysiologic mechanisms remain elusive and clinical studies on the relationship between inflammatory markers and metabolically healthy obesity (MHO) are scarce.MethodsIn this cross-sectional analysis, we included a sample of 437 older participants (60-84 years) from the Berlin Aging Study II (BASE-II). Peripheral blood mononuclear cells were isolated, immune cell subsets were analyzed with multiparameter flow cytometry and systemic cytokine levels were measured. Immune cell parameters were correlated with metabolic measures and multiple linear regression analysis was conducted and adjusted for various demographic and clinical factors.ResultsWe found that frequencies of naïve and memory CD4+ and CD8+ T cells inversely correlated with measures for insulin sensitivity in the older population. Moreover, the percentages of naïve CD4+ and CD8+ T cells were significantly higher, whereas activated T cells and IL-6 levels were lower in IS compared to insulin resistant (IR) obese individuals. The percentages of naïve CD4+ and CD8+ T cells were predictive for impaired insulin sensitivity (ß=0.16, p=0.01 and ß=0.11, p=0.04), and the association of naïve CD4+ T cells with insulin sensitivity persisted after multivariate adjustment (ß=0.14, p=0.02). ConclusionsThese findings support the hypothesis that parameters of systemic inflammation can differentiate IS from IR obese individuals that are at higher risk for cardiometabolic diseases and may have clinical implications with regard to obesity treatment stratification.Trial registration: DRKS00009277. Registered 31 August 2015 - Retrospectively registered, https://www.base2.mpg.de/de


2020 ◽  
Author(s):  
Julia Sbierski-Kind ◽  
David Goldeck ◽  
Nikolaus Buchmann ◽  
Joachim Spranger ◽  
Hans-Dieter Volk ◽  
...  

Abstract BackgroundObesity is associated with chronic low-grade inflammation leading to metabolic and cardiovascular diseases, but a subset of obese individuals is considered metabolically healthy. The underlying pathophysiologic mechanisms remain elusive and clinical studies on the relationship between inflammatory markers and metabolically healthy obesity (MHO) are scarce.MethodsIn this cross-sectional analysis, we included a sample of 437 older participants (60–84 years) from the Berlin Aging Study II (BASE-II). Peripheral blood mononuclear cells were isolated, immune cell subsets were analyzed with multiparameter flow cytometry and systemic cytokine levels were measured. Immune cell parameters were correlated with metabolic measures and multiple linear regression analysis was conducted and adjusted for various demographic and clinical factors.ResultsWe found that frequencies of naïve and memory CD4+ and CD8+ T cells inversely correlated with measures for insulin sensitivity in the older population. Moreover, the percentages of naïve CD4+ and CD8+ T cells were significantly higher, whereas activated T cells and IL-6 levels were lower in metabolically healthy compared to metabolically unhealthy obese individuals. The percentages of naïve CD4+ and CD8+ T cells were predictive for impaired insulin sensitivity (ß=0.16, p = 0.01 and ß=0.11, p = 0.04), and the association of naïve CD4+ T cells with insulin sensitivity persisted after multivariate adjustment (ß=0.14, p = 0.02).ConclusionsThese findings support the hypothesis that parameters of systemic inflammation can differentiate metabolically healthy from metabolically unhealthy obese individuals that are at higher risk for cardiometabolic diseases and may have clinical implications with regard to obesity treatment stratification.Trial registrationDRKS00009277. Registered 31 August 2015 - Retrospectively registered, https://www.base2.mpg.de/de


2021 ◽  
Vol 12 ◽  
Author(s):  
Marianna Santopaolo ◽  
Niall Sullivan ◽  
Anita Coral Thomas ◽  
Valeria Vincenza Alvino ◽  
Lindsay B. Nicholson ◽  
...  

Background: Chronic low-grade inflammation and alterations in innate and adaptive immunity were reported in Type 2 diabetes (T2D). Here, we investigated the abundance and activation of T cells in the bone marrow (BM) of patients with T2D. We then verified the human data in a murine model and tested if the activation of T cells can be rescued by treating mice with abatacept, an immunomodulatory drug employed for the treatment of rheumatoid arthritis. Clinical evidence indicated abatacept can slow the decline in beta-cell function.Methods: A cohort of 24 patients (12 with T2D) undergoing hip replacement surgery was enrolled in the study. Flow cytometry and cytokine analyses were performed on BM leftovers from surgery. We next compared the immune profile of db/db and control wt/db mice. In an additional study, db/db mice were randomized to receive abatacept or vehicle for 4 weeks, with endpoints being immune cell profile, indices of insulin sensitivity, and heart performance.Results: Patients with T2D showed increased frequencies of BM CD4+ (2.8-fold, p = 0.001) and CD8+ T cells (1.8-fold, p = 0.01), with the upregulation of the activation marker CD69 and the homing receptor CCR7 in CD4+ (1.64-fold, p = 0.003 and 2.27-fold, p = 0.01, respectively) and CD8+ fractions (1.79-fold, p = 0.05 and 1.69-fold, p = 0.02, respectively). These differences were confirmed in a multivariable regression model. CCL19 (CCR7 receptor ligand) and CXCL10/11 (CXCR3 receptor ligands), implicated in T-cell migration and activation, were the most differentially modulated chemokines. Studies in mice confirmed the activation of adaptive immunity in T2D. Abatacept reduced the activation of T cells and the levels of proinflammatory cytokines and improved cardiac function but not insulin sensitivity.Conclusions: Results provide proof-of-concept evidence for the activation of BM adaptive immunity in T2D. In mice, treatment with abatacept dampens the activation of adaptive immunity and protects from cardiac damage.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
David A. Fox ◽  
Steven K. Lundy ◽  
Michael L. Whitfield ◽  
Veronica Berrocal ◽  
Phillip Campbell ◽  
...  

Abstract Background Abnormalities in lymphocyte surface markers and functions have been described in systemic sclerosis (SSc), but conflicting results abound, and these studies often examined patients with heterogeneous disease duration, severity, clinical phenotype, and concurrent immunosuppressive agents. We studied a clinically homogeneous group of early diffuse cutaneous SSc patients not exposed to immunosuppressive drugs who were enrolled in a clinical trial and compared their immune parameters to healthy control subjects. Methods Lymphocyte subsets were enumerated by multi-parameter flow cytometry of peripheral blood mononuclear cells at baseline visit. Production of the cytokines IL-4 and IL-17 was measured by intracellular flow cytometry following T cell activation. Results SSc patients had increased percentages of CD4+ T cells but lower percentages of CD8+ T cells versus controls. The CD28-negative population was expanded in SSc, in the CD4 subset. Striking expansion of CD319+ T cells was noted among the CD4+ cells, in which they were barely detectable in healthy subjects. Frequencies of IL-4 producing cells did not differ between SSc and controls, but expansion of IL-17 producing cells was observed in SSc. A higher proportion of CD319+ cells produced cytokines, compared to other CD4+ cells. Numbers of activated T cells, regulatory T cells, and B cells were similar in SSc and control groups. Circulating follicular helper but not peripheral helper T cells were slightly expanded in SSc. Conclusion In this carefully selected group of early diffuse cutaneous SSc patients, analysis of immune cell parameters has identified abnormalities that likely reflect disease pathogenesis and that are candidate biomarkers for sub-classification and targeted treatment. The CD4+CD319+ (SLAM-F7+) cells are cytotoxic and oligoclonal, were recently shown to be a dominant T cell population in perivascular lymphocytic infiltrates in SSc skin, actively secrete cytokines, and are emerging as a target for novel treatments of SSc.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi129-vi129
Author(s):  
Sheila Carrera-Justiz ◽  
Brian Stover ◽  
Rowan Milner ◽  
Frances Weidert ◽  
Jianping Huang ◽  
...  

Abstract BACKGROUND The lack of appropriate preclinical murine glioblastoma models limits comprehensive toxicity/efficacy evaluation of investigational agents. To overcome this challenge, we evaluated the safety and activity of a new immunotherapeutic technology that we have pioneered (composed of tumor mRNA complexed into a custom lipid-nanoparticle formulation) in client-owned canines (pet dogs) diagnosed with malignant gliomas. OBJECTIVE/ METHODS Canine malignant gliomas were biopsied for generation of personalized tumor mRNA loaded into our custom lipid-nanoparticle (NP) vector. The patients received RNA-NPs intravenously beginning two weeks after their biopsy once weekly (x3) and no other anti-tumor therapeutic interventions. RESULTS Within a few hours after administration, tumor specific RNA-NPs elicited margination of peripheral blood mononuclear cells, which increased in the subsequent days/weeks post-treatment; suggesting that RNA-NPs mediate lymphoid honing of immune cell populations before egress. RNA-NPs also elicited increased: 1) serum interferon-α that spiked at 2 hours; 2) CD80 and MHCII on CD11c+ cells (demonstrating activation of peripheral DCs); and 3) interferon-γ + T-cells (i.e. activated T-cells). After receiving weekly RNA-NPs (×3), the canines had a steady course. Aside from low-grade fevers on the vaccination days, personalized tumor RNA-NPs (1x) were well tolerated with stable blood counts, chemistries, and renal/liver function tests. All patients assessed developed immunologic response with pseudoprogression or stable/smaller tumors by MRI. Although we have treated a small cohort, we have observed improvement in median/overall survival in all canine patients with terminal gliomas receiving RNA-NPs (compared with historical controls). CONCLUSION RNA-NPs were feasible, safe and immunologically active in client-owned canines with terminal gliomas. We have not appreciated significant toxicities in canines that would preclude investigation in humans at 1x dosing. Although these results need to be validated in larger canine data sets, these results suggest safety and activity of tumor specific RNA-NPs in canines with terminal gliomas.


Author(s):  
Adjimon G Lokossou ◽  
Caroline Toudic ◽  
Phuong Trang Nguyen ◽  
Xavier Elisseeff ◽  
Amandine Vargas ◽  
...  

Abstract Modulation of the activation status of immune cell populations during pregnancy depends on placental villous cytotrophoblast (VCT) cells and the syncytiotrophoblast (STB). Failure in the establishment of this immunoregulatory function leads to pregnancy complications. Our laboratory has been studying Syncytin-2 (Syn-2), an endogenous retroviral protein expressed in placenta and on the surface of placental exosomes. This protein plays an important role not only in STB formation through its fusogenic properties, but also through its immunosuppressive domain (ISD). Considering that Syn-2 expression is importantly reduced in preeclamptic placentas, we were interested in addressing its possible immunoregulatory effects on T cells. Activated Jurkat T cells and peripheral blood mononuclear cells (PBMCs) were treated with monomeric or dimerized version of a control or a Syn-2 ISD peptide. Change in phosphorylation levels of ERK1/2 MAP kinases was selectively noted in Jurkat cells treated with the dimerized ISD peptide. Upon incubation with the dimerized Syn-2 ISD peptide, significant reduction in Th1 cytokine production was further demonstrated by ELISA and Human Th1/Th2 Panel Multi-Analyte Flow Assay. To determine if exosome-associated Syn-2 could also be immunosuppressive placental exosomes were incubated with activated Jurkat and PBMCs. Quantification of Th1 cytokines in the supernatants revealed severe reduction in T cell activation. Interestingly, exosomes from Syn-2-silenced VCT incubated with PBMCs were less suppressive when compared with exosome derived from VCT transfected with control small interfering RNA (siRNA). Our results suggest that Syn-2 is an important immune regulator both locally and systemically, via its association with placental exosomes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10220 ◽  
Author(s):  
Silvia Pérez-Pérez ◽  
María Inmaculada Domínguez-Mozo ◽  
Aitana Alonso-Gómez ◽  
Silvia Medina ◽  
Noelia Villarrubia ◽  
...  

Background Gut microbiota has been related to multiple sclerosis (MS) etiopathogenesis. Short-chain fatty acids (SCFA) are compounds derived from microbial metabolism that have a role in gut-brain axis. Objectives To analyse SCFA levels in plasma of MS patients and healthy donors (HD), and the possible link between these levels and both clinical data and immune cell populations. Methods Ninety-five MS patients and 54 HD were recruited. Patients were selected according to their score in the Expanded Disability Status Scale (EDSS) (49 EDSS ≤ 1.5, 46 EDSS ≥ 5.0). SCFA were studied in plasma samples by liquid chromatography-mass spectrometry. Peripheral blood mononuclear cells were studied by flow cytometry. Gender, age, treatments, EDSS and Multiple Sclerosis Severity Score (MSSS) were evaluated at the recruitment. Results Plasma acetate levels were higher in patients than in HD (p = 0.003). Patients with EDSS ≥ 5.0 had higher acetate levels than those with EDSS≤ 1.5 (p = 0.029), and HD (p = 2.97e–4). Acetate levels correlated with EDSS (r = 0.387; p = 1.08e–4) and MSSS (r = 0.265; p = 0.011). In untreated MS patients, acetate levels correlated inversely with CD4+ naïve T cells (r =  − 0.550, p = 0.001) and directly with CD8+ IL-17+ cells (r = 0.557; p = 0.001). Conclusions Plasma acetate levels are higher in MS patients than in HD. In MS there exists a correlation between plasma acetate levels, EDSS and increased IL-17+ T cells. Future studies will elucidate the role of SCFA in the disease.


2021 ◽  
Author(s):  
Sakthi Rajendran ◽  
Clayton Peterson ◽  
Alessandro Canella ◽  
Yang Hu ◽  
Amy Gross ◽  
...  

Low grade gliomas (LGG) account for about two-thirds of all glioma diagnoses in adolescents and young adults (AYA) and malignant progression of these patients leads to dismal outcomes. Recent studies have shown the importance of the dynamic tumor microenvironment in high-grade gliomas (HGG), yet its role is still poorly understood in low-grade glioma malignant progression. Here, we investigated the heterogeneity of the immune microenvironment using a platelet-derived growth factor (PDGF)-driven RCAS (replication-competent ASLV long terminal repeat with a splice acceptor) glioma model that recapitulates the malignant progression of low to high-grade glioma in humans and also provides a model system to characterize immune cell trafficking and evolution. To illuminate changes in the immune cell landscape during tumor progression, we performed single-cell RNA sequencing on immune cells isolated from animals bearing no tumor (NT), LGG and HGG, with a particular focus on the myeloid cell compartment, which is known to mediate glioma immunosuppression. LGGs demonstrated significantly increased infiltrating T cells, CD4 T cells, CD8 T cells, B cells, and natural killer cells in the tumor microenvironment, whereas HGGs significantly abrogated this infiltration. Our study identified two distinct macrophage clusters in the tumor microenvironment; one cluster appeared to be bone marrow-derived while another was defined by overexpression of Trem2, a marker of tumor associated macrophages. Our data demonstrates that these two distinct macrophage clusters show an immune-activated phenotype (Stat1, Tnf, Cxcl9 and Cxcl10) in LGG which evolves to an immunosuppressive state (Lgals3, Apoc1 and Id2) in HGG that restricts T cell recruitment and activation. We identified CD74 and macrophage migration inhibition factor (MIF) as potential targets for these distinct macrophage populations. Interestingly, these results were mirrored by our analysis of the TCGA dataset, which demonstrated a statistically significant association between CD74 overexpression and decreased overall survival in AYA patients with grade II gliomas. Targeting immunosuppressive myeloid cells and intra-tumoral macrophages within this therapeutic window may ameliorate mechanisms associated with immunosuppression before and during malignant progression.


2021 ◽  
Vol 14 (673) ◽  
pp. eabc5763 ◽  
Author(s):  
Hema Kothari ◽  
Corey M. Williams ◽  
Chantel McSkimming ◽  
Fabrizio Drago ◽  
Melissa A. Marshall ◽  
...  

IL-1β is a key mediator of the cytokine storm linked to high morbidity and mortality from COVID-19, and IL-1β blockade with anakinra and canakinumab during COVID-19 infection has entered clinical trials. Using mass cytometry of human peripheral blood mononuclear cells, we identified effector memory CD4+ T cells and CD4−CD8low/−CD161+ T cells, specifically those positive for the chemokine receptor CCR6, as the circulating immune subtypes with the greatest response to IL-1β. This response manifested as increased phosphorylation and, thus, activation of the proinflammatory transcription factor NF-κB and was also seen in other subsets, including CD11c+ myeloid dendritic cells, classical monocytes, two subsets of natural killer cells (CD16−CD56brightCD161− and CD16−CD56dimCD161+), and lineage− (Lin−) cells expressing CD161 and CD25. IL-1β also induced a rapid but less robust increase in the phosphorylation of the kinase p38 as compared to that of NF-κB in most of these immune cell subsets. Prolonged IL-1β stimulation increased the phosphorylation of the transcription factor STAT3 and to a lesser extent that of STAT1 and STAT5 across various immune cell types. IL-1β–induced production of IL-6 likely led to the activation of STAT1 and STAT3 at later time points. Interindividual heterogeneity and inhibition of STAT activation by anakinra raise the possibility that assays measuring NF-κB phosphorylation in response to IL-1β in CCR6+ T cell subtypes could identify those patients at higher risk of cytokine storm and most likely to benefit from IL-1β–neutralizing therapies.


Sign in / Sign up

Export Citation Format

Share Document