scholarly journals Research on Body Positioning Measurement Method of Bolting Robot based on Vision Theory

Author(s):  
Xuedi Hao ◽  
Xueqiang Yang ◽  
Jinglin Zhang ◽  
Yaotian Ding ◽  
Miao Wu

Abstract In view of the intelligent demand of underground roadway support and the precise positioning of underground unmanned fully mechanized face, a method of body positioning measurement of bolting robot based on the principle of monocular vision is proposed. In this paper, a vehicle body positioning model based on image data is established. The data is obtained by camera, and the transformation between image coordinates and world coordinates is completed by coordinate system transformation. The monocular vision positioning system of bolting robot is designed, and the simulation experimental model is built to measure the effective positioning distance of monocular vision positioning system in the simulation experimental conditions. The experimental platform of bolting robot is designed, and the vehicle is measured Real time data of body positioning, analysis of experimental error and demonstration of reliability of the method. In this method, the real-time localization of underground mine is realized by the robot of bolting, and the accuracy and efficiency of localization are improved, which lays the foundation for the localization control of mining face and the automation and unmanned of the robot of bolting.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Svenja Ipsen ◽  
Sven Böttger ◽  
Holger Schwegmann ◽  
Floris Ernst

AbstractUltrasound (US) imaging, in contrast to other image guidance techniques, offers the distinct advantage of providing volumetric image data in real-time (4D) without using ionizing radiation. The goal of this study was to perform the first quantitative comparison of three different 4D US systems with fast matrix array probes and real-time data streaming regarding their target tracking accuracy and system latency. Sinusoidal motion of varying amplitudes and frequencies was used to simulate breathing motion with a robotic arm and a static US phantom. US volumes and robot positions were acquired online and stored for retrospective analysis. A template matching approach was used for target localization in the US data. Target motion measured in US was compared to the reference trajectory performed by the robot to determine localization accuracy and system latency. Using the robotic setup, all investigated 4D US systems could detect a moving target with sub-millimeter accuracy. However, especially high system latency increased tracking errors substantially and should be compensated with prediction algorithms for respiratory motion compensation.


Koedoe ◽  
1994 ◽  
Vol 37 (1) ◽  
Author(s):  
P.C. Viljoen ◽  
P.F. Retiff

The use of the Global Positioning System (GPS) for real-time data collecting during ecological aerial surveys (EAS) in the Kruger National Park (KNP) was investigated as an alternative to post-survey manual data capture. Results obtained during an aerial census of large herbivores and surface water distribution in the northern part of the KNP using an onboard GPS connected to a palmtop computer are discussed. This relatively inexpensive system proved to be highly efficient for real-time data capture while additional information such as ground velocity and time can be recorded for every data point. Measures of distances between a ground marker and fix points measured during a flight (x = 60.0 m) are considered to be well within the requirements of the EAS.


2015 ◽  
Vol 752-753 ◽  
pp. 1000-1005
Author(s):  
Li Kai Zhu ◽  
Dean Zhao ◽  
Wei Ji ◽  
Yu Chen

In view of the slowing expansion problem for the past harvesting robot’s electric push rod joint.This paper will adopt pneumatic draw stem instead of the original electric putter to improve the rapidity of servo system. Using VFW(Video for Windows) image acquisition system to access to the video buffer without generating the intermediate files,which can ensure high real-time performance. By monocular vision system to realize cylinder tracking control experiments for the fruit center position. Experiments verified the quickness and accuracy of the pneumatic servo positioning system.


Author(s):  
Hui Huang ◽  
Zhe Li

In this paper, a real-time image transmission algorithm in WSN with limited bandwidth networks is studied. Firstly, a simple and effective monitoring network architecture is established, which allows multiple video monitoring nodes to access the network, and the data transmission is controlled by the synchronization mechanism without collision. Then, the image data is compressed locally at the monitoring nodes (over 85%), so that the image of each node can meet the needs of real-time data transmission, and the overall power consumption of the system is greatly reduced. Finally, based on NVIDIA TX1, four test nodes are constructed to test the algorithm cumulatively, which verifies the effectiveness of the system framework and compression algorithm.


2011 ◽  
Vol 403-408 ◽  
pp. 1592-1595
Author(s):  
Guo Sheng Xu

A new kind of data acquisition system is introduced in this paper, in which the multi-channel synchronized real-time data acquisition under the coordinate control of field-programmable gate array(FPGA) is realized. The design uses field programmable gate arrays(FPGA) for the data processing and logic control. For high speed CCD image data processing, the paper adopts regional parallel processing based on FPGA. The FPGA inner block RAM is used to build high speed image data buffer is put into operation to achieve high speed image data integration and real-time processing. The proposed data acquisition system has characteristics of stable performance, flexible expansion, high real-timeness and integration


2020 ◽  
Vol 305 ◽  
pp. 00089 ◽  
Author(s):  
Simona Riurean ◽  
Marius Olar ◽  
Andreea Ionică ◽  
Lilla Pellegrini

Visible Light Communication (VLC) technology allows wireless data transmission piggybacked by illumination. Highly accurate and reliable systems based on VLC, as Indoor Positioning System (IPS) have been already developed by academics and specialized companies. Underground Positioning System (UPS) addressed here is embedded into the protection equipment, compulsory to be used underground, being therefore important to workers in potential dangerous spaces since fast data communication and real-time data interpretation is therefore possible. This paper presents the VLC technology implemented in mining underground specific environment for an accurate positioning and fast data communication for underground navigation with the main aim of developing a real time warning and alarming system based on Augmented Reality (AR) and Neural Networks (NNs) principles.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 86
Author(s):  
Eun Seo Song ◽  
Gi Tae Kim ◽  
Sung Dae Hong

Background/Objectives: The purpose of this study is control technology to reflect user's appearance and movement in the void display in real time.Methods/Statistical analysis: In this paper, we have developed real-time shading image data acquisition based on RGB-D sensor and real-time interaction image control structure for realizing 0-255 Depth image of physical void display. We also study integrated interlocking control solution for integrated interlocking of hardware and software.Findings: Conventional flip displays show data in 0,1 image representation. On the other hand, the void display we are studying acquires real-time data based on RGB-D and shows the data in depth 0-255 image representation.Improvements/Applications: In the void display, the image representation of 0.1 was extended to the depth 0-255 representation.


Sign in / Sign up

Export Citation Format

Share Document