scholarly journals LncRNA DSCAM-AS1 Promotes Proliferation, Migration and Invasion of Colorectal Cancer Cells via Modulating miR-144-5p/CDKL1

2020 ◽  
Author(s):  
Jiaping Pei ◽  
Xiaozhao Deng

Abstract Background LncRNA DSCAM-AS1 is oncogenic in several cancers. However, DSCAM-AS1 expression and function in colorectal cancer (CRC) remain far from being fully elucidated. Methods Paired CRC tissues/adjacent tissues were collected, and the expression levels of DSCAM-AS1, miR-144-5p and CDKL1 were examined by qRT-PCR; DSCAM-AS1 shRNA was transfected into HCT-116 and SW480 cell lines to establish cell models. The proliferation was detected through CCK-8 assay and plate colony formation assay. Transwell assay was used to evaluate the migration and invasion. QRT-PCR and western blot were adopted to analyze changes in miR-144-5p and CDKL1; luciferase reporter gene assay was performed to determine the regulatory relationship between miR-144-5p and DSCAM-AS1, miR-144-5p and CDKL1. Results DSCAM-AS1 was notably up-regulated in CRC samples, positively correlated with CDKL1 expression, while negatively correlated with miR-144-5p. After the transfection of DSCAM-AS1 shRNAs into cancer cells, the proliferative and metastatic ability of cancer cells were impeded. DSCAM-AS1 could reduce the expression level of miR-144-5p by binding with it. Additionally, CDKL1 was also validated as a target gene of miR-144-5p, and DSCAM-AS1 was proved to indirectly regulate CDKL1 expression. Conclusion DSCAM-AS1 was aberrantly up-regulated in CRC, and it can modulate the cells proliferative and metastatic ability. It has the ability to be the “ceRNA” to regulate CDKL1 expression via sponging miR-144-5p.

2020 ◽  
Author(s):  
Ming-zheng Cao ◽  
Ying Ba ◽  
Yue-feng Li

Abstract Background: Long non-coding RNA TTTY15 is oncogenic in prostate cancer, however its expression and function in colorectal cancer remain largely unknown.Methods: Paired colorectal cancer samples/adjacent tissues were collected, and the expression levels of TTTY15, miR-29a-3p and disheveled segment polarity protein 3 (DVL3) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). TTTY15 shRNAs were transfected into HT-29 and HCT-116 cell lines using lipofectamine reagent; the proliferation and colony formation were detected by CCK-8 assay and plate colony formation assay. qRT-PCR and western blot were used to analyze the changes of miR-29a-3p and DVL3; luciferase reporter gene assay was used to determine the regulatory relationship between miR-29a-3p and TTTY15, miR-29a-3p and DVL3.Results: TTTY15 was significantly up-regulated in cancerous tissues of colorectal cancer samples, positively correlated with the expression of DVL3, while negatively correlated with miR-29a-3p. After TTTY15 shRNAs were transfected into colorectal cancer cells, the proliferation and metastasis of cancer cells were significantly inhibited. TTTY15 shRNAs could reduce the expression of DVL3 on both mRNA and protein levels, and the luciferase activity of TTTY15 sequence was also inhibited by miR-29a-3p. DVL3 was also validated as a target gene of miR-29a-3p.Conclusion: TTTY15 is abnormally upregulated in colorectal cancer tissues, and it can modulate the proliferation and metastasis of colorectal cancer cells. It function as the ceRNA to regulate the expression of DVL3 by sponging miR-29a-3p.


2020 ◽  
pp. 1-11
Author(s):  
Xiao-Ying Zheng ◽  
Ming-Zheng Cao ◽  
Ying Ba ◽  
Yue-Feng Li ◽  
Jun-Ling Ye

BACKGROUND: Long non-coding RNA testis-specific transcript, Y-linked 15 (TTTY15) is oncogenic in prostate cancer, however its expression and function in colorectal cancer remain largely unknown. METHODS: Paired colorectal cancer samples/adjacent tissues were collected, and the expression levels of TTTY15, miR-29a-3p and disheveled segment polarity protein 3 (DVL3) were examined by quantitative real-time polymerase chain reaction (qRT-PCR); TTTY15 shRNA and overexpression plasmids were transfected into HT29 and HCT-116 cell lines using lipofectamine reagent, respectively; the proliferation and colony formation were detected by CCK-8 assay and plate colony formation assay; qRT-PCR and Western blot were used to analyze the changes of miR-29a-3p and DVL3; dual-luciferase reporter gene assay was used to determine the regulatory relationships between miR-29a-3p and TTTY15, miR-29a-3p and DVL3. RESULTS: TTTY15 was significantly up-regulated in cancerous tissues of colorectal cancer samples, positively correlated with the expression of DVL3, while negatively correlated with the expression of miR-29a-3p. After TTTY15 shRNAs were transfected into colorectal cancer cells, the proliferation and metastasis of cancer cells were significantly inhibited, while TTTY15 overexpression had opposite biological effects. TTTY15 shRNA could reduce the expression of DVL3 on both mRNA and protein levels, and the luciferase activity of TTTY15 sequence was also inhibited by miR-29a-3p. DVL3 was also validated as a target gene of miR-29a-3p, and it could be repressed by miR-29a-3p mimics or TTTY15 shRNA. CONCLUSION: TTTY15 is abnormally upregulated in colorectal cancer tissues, and it can modulate the proliferation and metastasis of colorectal cancer cells. It functions as the ceRNA to regulate the expression of DVL3 by sponging miR-29a-3p.


2021 ◽  
Vol 20 ◽  
pp. 153303382097234
Author(s):  
Bo Liao ◽  
Shuangquan Chen ◽  
Yugen Li ◽  
Zhaohui Yang ◽  
Ying Yang ◽  
...  

Background: Long non-coding RNA bladder cancer associated transcript 1 (BLACAT1) is oncogenic in several types of cancers. However, little is known concerning its expression and function in prostate cancer. Methods: Paired prostate cancer samples were collected, and the expression levels of BLACAT1, miR-29a-3p and disheveled segment polarity protein 3 (DVL3) were examined by quantitative real-time polymerase chain reaction (qRT-PCR); BLACAT1 shRNAs were transfected into PC-3 and LNCaP cell lines, and proliferative ability was detected by cell counting kit-8 (CCK-8) assay; qRT-PCR and Western blot were used to analyze the changes of miR-29a-3p and DVL3; dual-luciferase reporter gene assay was used to determine the regulatory relationships between miR-29a-3p and BLACAT1, and miR-29a-3p and DVL3. Results: BLACAT1 expression was significantly up-regulated in cancerous tissues of prostate cancer samples and positively correlated with the expression of DVL3, while negatively associated with miR-29a-3p. After the transfection of BLACAT1 shRNAs into prostate cancer cells, the proliferative ability and metastatic ability of cancer cells were significantly inhibited; BLACAT1 shRNAs could reduce the expression of DVL3 on both mRNA and protein expressions levels, the luciferase activity of BLACAT1 reporter was inhibited by miR-29a-3p, and DVL3 was validated as a target gene of miR-29a-3p. Conclusion: BLACAT1 expression is abnormally up-regulated in prostate cancer tissues. BLACAT1 can modulate the proliferative and metastatic ability of prostate cancer cells and have the potential to be the “ceRNA” to regulate the expression of DVL3 by sponging miR-29a-3p.


2020 ◽  
Vol 34 ◽  
pp. 205873842095894
Author(s):  
Xiaobo Yu ◽  
Qiang Lin ◽  
Fabing Liu ◽  
Fu Yang ◽  
Jingyu Mao ◽  
...  

Introduction: This study aims at probing into the expression and biological function of long non-coding RNA (lncRNA) TMPO-AS1 in non-small cell lung cancer (NSCLC), and exploring its regulatory role for miR-204-3p and erb-b2 receptor tyrosine kinase 2 (ERBB2). Methods: In this study, paired NSCLC samples were collected, and the expression levels of TMPO-AS1, miR-204-3p and ERBB2 were examined by quantitative real-time polymerase chain reaction (qRT-PCR); proliferative ability and colony formation ability were detected by CCK-8 assay and plate colony formation assay, respectively; flow cytometry was performed to detect the effect of TMPO-AS1 on apoptosis; Transwell assay was used to detect the changes of migration and invasion; qRT-PCR and Western blot were utilised to analyse the changes of miR-204-3p and ERBB2 regulated by TMPO-AS1; luciferase reporter gene assay and RNA immunoprecipitation assay were employed to determine the regulatory relationship between TMPO-AS1 and miR-204-3p. Results: We demonstrated that TMPO-AS1 was significantly up-regulated in cancerous tissues of NSCLC samples, and positively correlated with the expression of ERBB2, while negatively correlated with miR-204-3p. After transfection of TMPO-AS1 shRNAs into NSCLC cells, the malignant phenotypes of NSCLC cells were significantly inhibited, while overexpression of TMPO-AS1 had opposite effects; TMPO-AS1 was also demonstrated to regulate the expression of miR-204-3p by sponging it, and indirectly modulate the expression of ERBB2. Conclusion: Collectively, we conclude that TMPO-AS1 has the potential to be the ‘ceRNA’ to regulate the expression of ERBB2 by sponging miR-204-3p in NSCLC.


2020 ◽  
Vol 68 (8) ◽  
pp. 1349-1356
Author(s):  
Yujin Wang ◽  
Jixiang Wang ◽  
Hongyan Hao ◽  
Xiangxia Luo

It is reported that lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) is oncogenic in many cancers. This work aimed at probing into its expression and biological functions in retinoblastoma (RB) as well as its regulatory effects on miR-153-3p and hypoxia-inducible factor-1α (HIF-1α). In our study, RB samples in pair were collected, and quantitative real-time PCR (qRT-PCR) was employed for examining the expression levels of KCNQ1OT1, miR-153-3p and HIF-1α. KCNQ1OT1 short hairpin RNAs were transfected into SO-Rb50 and HXO-RB44 cell to inhibit the expression of KCNQ1OT1. The proliferative activity, colony formation ability and apoptosis were examined through cell counting kit-8 assay, colony formation assays, Transwell assay and flow cytometry, respectively. qRT-PCR and western blot analysis were used for analyzing the changes of miR-153-3p and HIF-1α induced by KCNQ1OT1. The regulatory relationships between miR-153-3p and KCNQ1OT1, miR-153-3p and HIF-1α were examined by dual luciferase reporter gene assay and RNA-binding protein immunoprecipitation assay. The results of our study showed that KCNQ1OT1 expression was markedly enhanced in RB tissue samples, and KCNQ1OT1 knockdown had an inhibitory effect on the proliferation, migration, invasion and viability of RB cells. There were two validated binding sties between KCNQ1OT1 and miR-153-3p, and KCNQ1OT1 negatively regulated the expression of miR-153-3p in RB cells. HIF-1α was a target gene of miR-153-3p, and could be positively regulated by KCNQ1OT1. In conclusion, our study indicates that KCNQ1OT1 can increase the malignancy of RB cells via regulating miR-153-3p/HIF-1α axis.


2020 ◽  
Author(s):  
Liangjun Tao ◽  
Xinyuan Pan ◽  
Jiawei Wang ◽  
Li Zhang ◽  
Lingsong Tao ◽  
...  

Abstract Background: Growing studies indicate that circRNAs play critical roles in human diseases, and show great potential as biomarkers and therapeutic targets. This study aims to investigate the expression and function of circANKS1B in prostate cancer (PC).Methods: The expression of circANKS1B and miRNA-152-3p were determined by real-time qRT-PCR. The cell migration and invasion were measured by transwell assay. The interaction between circANKS1B and miR-152-3p was confirmed by dual-luciferase reporter gene assay. Rescue experiments were conducted to demonstrate whether circANKS1B regulated the migration and invasion of PC cells by the circANKS1B-miR-152-3p-TGF-α pathway.Results: The expression of circANKS1B was dramatically up-regulated both in PC cells and tissues. Moreover, high circANKS1B expression was associated with a poor prognosis of PC patients. Dual-luciferase reporter assay indicated that circABKS1B directly bound to miRNA-152-3p. Furthermore, circANKS1B negatively regulated miR-152-3p expression. Knockdown of circANKS1B remarkably suppressed PC cells invasion and TGF-α expression, while the effects of circANKS1B silencing were reversed by miR-152-3p deficiency. In addition, the impact of miR-152-3p silencing on PC cell invasion was also abrogated by TGF-α deficiency. In all, circANKS1B as the sponge of miR-152-3p promotes prostate cancer progression by up-regulating TGF-α expression.Conclusion: Our findings reveal that circANKS1B could be a potential prognostic biomarker and therapeutic target of PC.


2018 ◽  
Vol 49 (4) ◽  
pp. 1289-1303 ◽  
Author(s):  
Lei  Chang ◽  
Ruixia Guo ◽  
Zhongfu Yuan ◽  
Huirong Shi ◽  
Dongya Zhang

Background/Aims: The long noncoding RNA homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) has been demonstrated to be a vital modulator in the proliferation and metastasis of ovarian cancer cells, but its potential molecular mechanism remains to be elucidated. In the current study, we aimed to uncover the biological role of lncRNA HOTAIR and its underlying regulatory mechanism in the progression and metastasis of ovarian cancer. Methods: HOTAIR expression was detected by quantitative RT-PCR (qRT-PCR) and northern blotting. The SKOV3 ovarian cancer cell line was chosen for the subsequent assays. In addition, the molecular mRNA and protein expression levels were examined by qRT-PCR and western blotting. The competitive endogenous RNA (ceRNA) mechanism was validated by bioinformatics analysis and a dual luciferase reporter gene assay. Results: HOTAIR expression was significantly higher in ovarian carcinoma tissues and cell lines than in the control counterparts. Both CCND1 and CCND2 were downstream targets of miR-206. The inhibition of HOTAIR elevated the expression of miR-206 and inhibited the expression of CCND1 and CCND2. Moreover, CCND1 and CCND2 were highly expressed in ovarian cancer tissues, and their expression was positively correlated with HOTAIR expression. Finally, the functional assays indicated that the anticancer effects of miR-206 could be rescued by the simultaneous overexpression of either CCND1 or CCND2 in ovarian cancer. Conclusion: HOTAIR enhanced CCND1 and CCND2 expression by negatively modulating miR-206 expression and stimulating the proliferation, cell cycle progression, migration and invasion of ovarian cancer cells.


2020 ◽  
Vol 19 ◽  
pp. 153303382093413 ◽  
Author(s):  
Huiling Zhang ◽  
Ruxin Chen ◽  
Jinyan Shao

Purpose: The current study was intended to research the functional role and regulatory mechanism of microRNA-96-5p in the progression of cervical cancer. Methods: MicroRNA-96-5p expression in cervical cancer tissues was assessed by quantitative real-time polymerase chain reaction. The association between microRNA-96-5p expression and clinicopathological features of patients with cervical cancer was analyzed. MTT, flow cytometry, wound healing, and transwell assay were performed to evaluate the viability, apoptosis, migration, and invasion of Hela and SiHa cells. Targetscan, dual-luciferase reporter gene assay, and RNA pull-down analysis were constructed to evaluate the target relationship between microRNA-96-5p and secreted frizzled-related protein 4. Results: MicroRNA-96-5p was overexpressed in cervical cancer tissues, and microRNA-96-5p expression was markedly associated with the clinical stage and lymph node metastasis of patients with cervical cancer. Overexpressed microRNA-96-5p facilitated the viability, migration, invasion, and inhibited the apoptosis of Hela and SiHa cells, whereas suppression of microRNA-96-5p exerted the opposite trend. Secreted frizzled-related protein 4 was proved to be a target of microRNA-96-5p. Silencing of secreted frizzled-related protein 4 eliminated the anti-tumor effect of microRNA-96-5p on cervical cancer cells. Conclusions: MicroRNA-96-5p facilitated the viability, migration, and invasion and inhibited the apoptosis of cervical cancer cells via negatively regulating secreted frizzled-related protein 4.


2020 ◽  
Vol 15 (1) ◽  
pp. 159-172
Author(s):  
Guoning Su ◽  
Zhibing Yan ◽  
Min Deng

AbstractSevoflurane was frequently used as a volatile anesthetic in cancer surgery. However, the potential mechanism of sevoflurane on lung cancer remains largely unclear. In this study, lung cancer cell lines (H446 and H1975) were treated by various concentrations of sevoflurane. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assessment and colony formation assay were performed to detect the cell viability and proliferation, separately. Also, transwell assay or flow cytometry assay was applied as well to evaluate the invasive ability or apoptosis in lung cancer cells, respectively. Western blot assay was employed to detect the protein levels of β-catenin and Wnt5a. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the expression level of prostate cancer-associated transcript 6 (PCAT6) and miR-326 in lung cancer tissues and cells. The target interaction between miR-326 and PCAT6 or Wnt5a was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. Sevoflurane inhibited the abilities on viability, proliferation, invasion, and activation of Wnt/β-catenin signaling, but promoted apoptosis of H446 and H1975 cells in a dose-dependent manner. The expression of PCAT6 was increased in lung cancer tissues and cells, except for that of miR-326. Besides, sevoflurane could lead to expressed limitation of PCAT6 or improvement of miR-326. This process presented a stepwise manner. Up-regulation of PCAT6 restored the suppression of sevoflurane on abilities of proliferation, invasion, rather than apoptosis, and re-activated the Wnt5a/β-catenin signaling in cells. Moreover, the putative binding sites between miR-326 and PCTA6 or Wnt5a were predicted by starBase v2.0 software online. PCAT6 suppressing effects on cells could be reversed by pre-treatment with miR-326 vector. The promotion of Wnt5a inverted effects led from miR-326 or sevoflurane. Our study indicated that sevoflurane inhibited the proliferation, and invasion, but enhanced the apoptosis in lung cancer cells by regulating the lncRNA PCAT6/miR-326/Wnt5a/β-catenin axis.


2021 ◽  
Vol 35 ◽  
pp. 205873842110167
Author(s):  
Zhensen Zhu ◽  
Bo Chen ◽  
Liang Peng ◽  
Songying Gao ◽  
Jingdong Guo ◽  
...  

Activated M2 macrophages are involved in hypertrophic scar (HS) formation via manipulating the differentiation of fibroblasts to myofibroblasts having the proliferative capacity and biological function. However, the function of exosomes derived from M2 macrophages in HS formation is unclear. Thus, this study aims to investigate the role of exosomes derived by M2 in the formation of HS. To understand the effect of exosomes derived from M2 macrophages on formation of HS, M2 macrophages were co-cultured with human dermal fibroblast (HDF) cells. Cell Counting Kit-8 assay was performed to evaluate HDF proliferation. To evaluate the migration and invasion of HDFs, wound-healing and transwell invasion assays were performed, respectively. To investigate the interaction between LINC01605 and miR-493-3p, a dual-luciferase reporter gene assay was adopted; consequently, an interaction between miR-493-3p and AKT1 was detected. Our results demonstrated that exosomes derived from M2 macrophages promoted the proliferation, migration, and invasion of HDFs. Additionally, we found that long noncoding RNA LINC01605, enriched in exosomes derived from M2 macrophages, promoted fibrosis of HDFs and that GW4869, an inhibitor of exosomes, could revert this effect. Mechanistically, LINC01605 promoted fibrosis of HDFs by directly inhibiting the secretion of miR-493-3p, and miR-493-3p down-regulated the expression of AKT1. Exosomes derived from M2 macrophages promote the proliferation and migration of HDFs by transmitting LINC01605, which may activate the AKT signaling pathway by sponging miR-493-3p. Our results provide a novel approach and basis for further investigation of the function of M2 macrophages in HS formation.


Sign in / Sign up

Export Citation Format

Share Document