scholarly journals LncRNA Testis-specific transcript, Y-linked 15 (TTTY15) promotes proliferation, migration and invasion of colorectal cancer cells via regulating miR-29a-3p/DVL3 axis

2020 ◽  
Author(s):  
Ming-zheng Cao ◽  
Ying Ba ◽  
Yue-feng Li

Abstract Background: Long non-coding RNA TTTY15 is oncogenic in prostate cancer, however its expression and function in colorectal cancer remain largely unknown.Methods: Paired colorectal cancer samples/adjacent tissues were collected, and the expression levels of TTTY15, miR-29a-3p and disheveled segment polarity protein 3 (DVL3) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). TTTY15 shRNAs were transfected into HT-29 and HCT-116 cell lines using lipofectamine reagent; the proliferation and colony formation were detected by CCK-8 assay and plate colony formation assay. qRT-PCR and western blot were used to analyze the changes of miR-29a-3p and DVL3; luciferase reporter gene assay was used to determine the regulatory relationship between miR-29a-3p and TTTY15, miR-29a-3p and DVL3.Results: TTTY15 was significantly up-regulated in cancerous tissues of colorectal cancer samples, positively correlated with the expression of DVL3, while negatively correlated with miR-29a-3p. After TTTY15 shRNAs were transfected into colorectal cancer cells, the proliferation and metastasis of cancer cells were significantly inhibited. TTTY15 shRNAs could reduce the expression of DVL3 on both mRNA and protein levels, and the luciferase activity of TTTY15 sequence was also inhibited by miR-29a-3p. DVL3 was also validated as a target gene of miR-29a-3p.Conclusion: TTTY15 is abnormally upregulated in colorectal cancer tissues, and it can modulate the proliferation and metastasis of colorectal cancer cells. It function as the ceRNA to regulate the expression of DVL3 by sponging miR-29a-3p.

2020 ◽  
pp. 1-11
Author(s):  
Xiao-Ying Zheng ◽  
Ming-Zheng Cao ◽  
Ying Ba ◽  
Yue-Feng Li ◽  
Jun-Ling Ye

BACKGROUND: Long non-coding RNA testis-specific transcript, Y-linked 15 (TTTY15) is oncogenic in prostate cancer, however its expression and function in colorectal cancer remain largely unknown. METHODS: Paired colorectal cancer samples/adjacent tissues were collected, and the expression levels of TTTY15, miR-29a-3p and disheveled segment polarity protein 3 (DVL3) were examined by quantitative real-time polymerase chain reaction (qRT-PCR); TTTY15 shRNA and overexpression plasmids were transfected into HT29 and HCT-116 cell lines using lipofectamine reagent, respectively; the proliferation and colony formation were detected by CCK-8 assay and plate colony formation assay; qRT-PCR and Western blot were used to analyze the changes of miR-29a-3p and DVL3; dual-luciferase reporter gene assay was used to determine the regulatory relationships between miR-29a-3p and TTTY15, miR-29a-3p and DVL3. RESULTS: TTTY15 was significantly up-regulated in cancerous tissues of colorectal cancer samples, positively correlated with the expression of DVL3, while negatively correlated with the expression of miR-29a-3p. After TTTY15 shRNAs were transfected into colorectal cancer cells, the proliferation and metastasis of cancer cells were significantly inhibited, while TTTY15 overexpression had opposite biological effects. TTTY15 shRNA could reduce the expression of DVL3 on both mRNA and protein levels, and the luciferase activity of TTTY15 sequence was also inhibited by miR-29a-3p. DVL3 was also validated as a target gene of miR-29a-3p, and it could be repressed by miR-29a-3p mimics or TTTY15 shRNA. CONCLUSION: TTTY15 is abnormally upregulated in colorectal cancer tissues, and it can modulate the proliferation and metastasis of colorectal cancer cells. It functions as the ceRNA to regulate the expression of DVL3 by sponging miR-29a-3p.


2020 ◽  
Author(s):  
Jiaping Pei ◽  
Xiaozhao Deng

Abstract Background LncRNA DSCAM-AS1 is oncogenic in several cancers. However, DSCAM-AS1 expression and function in colorectal cancer (CRC) remain far from being fully elucidated. Methods Paired CRC tissues/adjacent tissues were collected, and the expression levels of DSCAM-AS1, miR-144-5p and CDKL1 were examined by qRT-PCR; DSCAM-AS1 shRNA was transfected into HCT-116 and SW480 cell lines to establish cell models. The proliferation was detected through CCK-8 assay and plate colony formation assay. Transwell assay was used to evaluate the migration and invasion. QRT-PCR and western blot were adopted to analyze changes in miR-144-5p and CDKL1; luciferase reporter gene assay was performed to determine the regulatory relationship between miR-144-5p and DSCAM-AS1, miR-144-5p and CDKL1. Results DSCAM-AS1 was notably up-regulated in CRC samples, positively correlated with CDKL1 expression, while negatively correlated with miR-144-5p. After the transfection of DSCAM-AS1 shRNAs into cancer cells, the proliferative and metastatic ability of cancer cells were impeded. DSCAM-AS1 could reduce the expression level of miR-144-5p by binding with it. Additionally, CDKL1 was also validated as a target gene of miR-144-5p, and DSCAM-AS1 was proved to indirectly regulate CDKL1 expression. Conclusion DSCAM-AS1 was aberrantly up-regulated in CRC, and it can modulate the cells proliferative and metastatic ability. It has the ability to be the “ceRNA” to regulate CDKL1 expression via sponging miR-144-5p.


2020 ◽  
Vol 68 (8) ◽  
pp. 1349-1356
Author(s):  
Yujin Wang ◽  
Jixiang Wang ◽  
Hongyan Hao ◽  
Xiangxia Luo

It is reported that lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) is oncogenic in many cancers. This work aimed at probing into its expression and biological functions in retinoblastoma (RB) as well as its regulatory effects on miR-153-3p and hypoxia-inducible factor-1α (HIF-1α). In our study, RB samples in pair were collected, and quantitative real-time PCR (qRT-PCR) was employed for examining the expression levels of KCNQ1OT1, miR-153-3p and HIF-1α. KCNQ1OT1 short hairpin RNAs were transfected into SO-Rb50 and HXO-RB44 cell to inhibit the expression of KCNQ1OT1. The proliferative activity, colony formation ability and apoptosis were examined through cell counting kit-8 assay, colony formation assays, Transwell assay and flow cytometry, respectively. qRT-PCR and western blot analysis were used for analyzing the changes of miR-153-3p and HIF-1α induced by KCNQ1OT1. The regulatory relationships between miR-153-3p and KCNQ1OT1, miR-153-3p and HIF-1α were examined by dual luciferase reporter gene assay and RNA-binding protein immunoprecipitation assay. The results of our study showed that KCNQ1OT1 expression was markedly enhanced in RB tissue samples, and KCNQ1OT1 knockdown had an inhibitory effect on the proliferation, migration, invasion and viability of RB cells. There were two validated binding sties between KCNQ1OT1 and miR-153-3p, and KCNQ1OT1 negatively regulated the expression of miR-153-3p in RB cells. HIF-1α was a target gene of miR-153-3p, and could be positively regulated by KCNQ1OT1. In conclusion, our study indicates that KCNQ1OT1 can increase the malignancy of RB cells via regulating miR-153-3p/HIF-1α axis.


2021 ◽  
Vol 20 ◽  
pp. 153303382097234
Author(s):  
Bo Liao ◽  
Shuangquan Chen ◽  
Yugen Li ◽  
Zhaohui Yang ◽  
Ying Yang ◽  
...  

Background: Long non-coding RNA bladder cancer associated transcript 1 (BLACAT1) is oncogenic in several types of cancers. However, little is known concerning its expression and function in prostate cancer. Methods: Paired prostate cancer samples were collected, and the expression levels of BLACAT1, miR-29a-3p and disheveled segment polarity protein 3 (DVL3) were examined by quantitative real-time polymerase chain reaction (qRT-PCR); BLACAT1 shRNAs were transfected into PC-3 and LNCaP cell lines, and proliferative ability was detected by cell counting kit-8 (CCK-8) assay; qRT-PCR and Western blot were used to analyze the changes of miR-29a-3p and DVL3; dual-luciferase reporter gene assay was used to determine the regulatory relationships between miR-29a-3p and BLACAT1, and miR-29a-3p and DVL3. Results: BLACAT1 expression was significantly up-regulated in cancerous tissues of prostate cancer samples and positively correlated with the expression of DVL3, while negatively associated with miR-29a-3p. After the transfection of BLACAT1 shRNAs into prostate cancer cells, the proliferative ability and metastatic ability of cancer cells were significantly inhibited; BLACAT1 shRNAs could reduce the expression of DVL3 on both mRNA and protein expressions levels, the luciferase activity of BLACAT1 reporter was inhibited by miR-29a-3p, and DVL3 was validated as a target gene of miR-29a-3p. Conclusion: BLACAT1 expression is abnormally up-regulated in prostate cancer tissues. BLACAT1 can modulate the proliferative and metastatic ability of prostate cancer cells and have the potential to be the “ceRNA” to regulate the expression of DVL3 by sponging miR-29a-3p.


2020 ◽  
Vol 34 ◽  
pp. 205873842095894
Author(s):  
Xiaobo Yu ◽  
Qiang Lin ◽  
Fabing Liu ◽  
Fu Yang ◽  
Jingyu Mao ◽  
...  

Introduction: This study aims at probing into the expression and biological function of long non-coding RNA (lncRNA) TMPO-AS1 in non-small cell lung cancer (NSCLC), and exploring its regulatory role for miR-204-3p and erb-b2 receptor tyrosine kinase 2 (ERBB2). Methods: In this study, paired NSCLC samples were collected, and the expression levels of TMPO-AS1, miR-204-3p and ERBB2 were examined by quantitative real-time polymerase chain reaction (qRT-PCR); proliferative ability and colony formation ability were detected by CCK-8 assay and plate colony formation assay, respectively; flow cytometry was performed to detect the effect of TMPO-AS1 on apoptosis; Transwell assay was used to detect the changes of migration and invasion; qRT-PCR and Western blot were utilised to analyse the changes of miR-204-3p and ERBB2 regulated by TMPO-AS1; luciferase reporter gene assay and RNA immunoprecipitation assay were employed to determine the regulatory relationship between TMPO-AS1 and miR-204-3p. Results: We demonstrated that TMPO-AS1 was significantly up-regulated in cancerous tissues of NSCLC samples, and positively correlated with the expression of ERBB2, while negatively correlated with miR-204-3p. After transfection of TMPO-AS1 shRNAs into NSCLC cells, the malignant phenotypes of NSCLC cells were significantly inhibited, while overexpression of TMPO-AS1 had opposite effects; TMPO-AS1 was also demonstrated to regulate the expression of miR-204-3p by sponging it, and indirectly modulate the expression of ERBB2. Conclusion: Collectively, we conclude that TMPO-AS1 has the potential to be the ‘ceRNA’ to regulate the expression of ERBB2 by sponging miR-204-3p in NSCLC.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kuijie Liu ◽  
Hua Zhao ◽  
Hongliang Yao ◽  
Sanlin Lei ◽  
Zhendong Lei ◽  
...  

MicroRNAs are a class of small, noncoding RNAs that function as critical regulators of gene expression by targeting mRNAs for translational repression or degradation. In this study, we demonstrate that expression of microRNA-124 (miR-124) is significantly downregulated in colorectal cancer tissues and cell lines, compared to the matched adjacent tissues. We identified and confirmed inhibitor of apoptosis-stimulating protein of p53 (iASPP) as a novel, direct target of miR-124 using target prediction algorithms and luciferase reporter gene assays. Overexpression of miR-124 suppressed iASPP protein expression, upregulated expression of the downstream signaling molecule nuclear factor-kappa B (NF-κB), and attenuated cell viability, proliferation, and colony formation in SW480 and HT-29 colorectal cancer cells in vitro. Forced overexpression ofiASPPpartly rescued the inhibitory effect of miR-124 on SW480 and HT29 cell proliferation. Taken together, these findings shed light on the role and mechanism of action of miR-124, indicate that the miR-124/iASPP axis can regulate the proliferation of colorectal cancer cells, and suggest that miR-124 may serve as a potential therapeutic target for colorectal cancer.


Author(s):  
Chijiang Gu ◽  
Mingyuan Zhang ◽  
Weiliang Sun ◽  
Changzheng Dong

Colorectal cancer (CRC) is a common clinical cancer that remains incurable in most cases. miRNAs are reported to play a part in the development of various tumors. In the present study, we found that miR-324-5p was downregulated in CRC cells, while ELAV (embryonic lethal, abnormal vision, Drosophila)-like protein 1 (ELAVL1) showed a higher expression. miR-324-5p transfection significantly inhibited the proliferation as well as invasion in both SW620 and SW480 cells. miR-324-5p mimic transfection markedly decreased the expression of ELAVL1. Luciferase reporter gene assay confirmed that ELAVL1 is a direct target of miR-324-5p. Furthermore, cancer invasion factors uPA, uPAR, and MMP-9 were found to drop significantly in miR-324-5p-transfected groups. To conclude, our findings indicate that miR-324-5p may play a suppressive role in colorectal cell viability and invasion, at least in part, through directly targeting ELAVL1. Therefore, miR-234-5p might function as a promising candidate for CRC treatment and deserves deeper research.


2018 ◽  
Vol 49 (4) ◽  
pp. 1289-1303 ◽  
Author(s):  
Lei  Chang ◽  
Ruixia Guo ◽  
Zhongfu Yuan ◽  
Huirong Shi ◽  
Dongya Zhang

Background/Aims: The long noncoding RNA homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) has been demonstrated to be a vital modulator in the proliferation and metastasis of ovarian cancer cells, but its potential molecular mechanism remains to be elucidated. In the current study, we aimed to uncover the biological role of lncRNA HOTAIR and its underlying regulatory mechanism in the progression and metastasis of ovarian cancer. Methods: HOTAIR expression was detected by quantitative RT-PCR (qRT-PCR) and northern blotting. The SKOV3 ovarian cancer cell line was chosen for the subsequent assays. In addition, the molecular mRNA and protein expression levels were examined by qRT-PCR and western blotting. The competitive endogenous RNA (ceRNA) mechanism was validated by bioinformatics analysis and a dual luciferase reporter gene assay. Results: HOTAIR expression was significantly higher in ovarian carcinoma tissues and cell lines than in the control counterparts. Both CCND1 and CCND2 were downstream targets of miR-206. The inhibition of HOTAIR elevated the expression of miR-206 and inhibited the expression of CCND1 and CCND2. Moreover, CCND1 and CCND2 were highly expressed in ovarian cancer tissues, and their expression was positively correlated with HOTAIR expression. Finally, the functional assays indicated that the anticancer effects of miR-206 could be rescued by the simultaneous overexpression of either CCND1 or CCND2 in ovarian cancer. Conclusion: HOTAIR enhanced CCND1 and CCND2 expression by negatively modulating miR-206 expression and stimulating the proliferation, cell cycle progression, migration and invasion of ovarian cancer cells.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Min Pan ◽  
Qiuqiu Chen ◽  
Yusong Lu ◽  
Feifei Wei ◽  
Chunqiao Chen ◽  
...  

Abstract MicroRNA-106b-5p (miR-106b-5p) is involved in the development of many cancers including colorectal cancer (CRC), and FAT4 is correlated with regulation of growth and apoptosis of cancer cells. The present study aimed to investigate the relation between FAT4 and miR-106b-5p and the underlying mechanism of the two on the development of CRC. Quantitative real-time PCR (qRT-PCR) assay and Western blot (WB) analysis were performed to detect the expressions of messenger RNAs (mRNAs), microRNAs (miRNAs) and proteins. The viability of CRC cells was detected by cell counting kit-8 (CCK-8). Scratch test and transwell assay were performed to measure the migration and invasion of CRC cell. Tumor angiogenesis was simulated by in vitro angiogenesis experiment. Dual-luciferase reporter assay was performed to verify the targeting relation between miR-106b-5p and FAT4. The study found that the expression of FAT4 was down-regulated and that of miR-106b-5p was up-regulated in CRC tissues. Overexpression of FAT4 resulted in decreased proliferation, migration, invasion and angiogenesis of CRC cells, whereas silencing of FAT4 led to the opposite results. In rescue experiment, miR-106b-5p partially reversed the function of FAT4 in CRC cells, thus playing a carcinogenic role by targeting FAT4 in the CRC cells.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiaoyan Lei ◽  
Longchao Li ◽  
Xiaoyi Duan

Recently, lncRNA has been verified to regulate the development and progression of tumor. LncRNA ABHD11-AS1 has been proven to serve as an oncogene in several cancers. However, the role of ABHD11-AS1 in colorectal cancer remains totally unknown. In the present study, qRT-PCR assay revealed that ABHD11-AS1 expression was markedly higher in colorectal cancer tissues and cell lines. In addition, patients who displayed overexpression of ABHD11-AS1 showed a significantly poorer progression free survival (PFS) and overall survival (OS) by Kaplan–Meier analysis. Loss-of-function experiments suggested that silencing of ABHD11-AS1 expression could significantly reduce the proliferation, colony formation, migration and invasion of colorectal cancer cells, and increase cell apoptosis. Moreover, bioinformatics analysis, biotin pull-down assay, luciferase reporter assay, and RIP assay disclosed that ABHD11-AS1 straightly interacted with miR-133a. We also found that SOX4 was a downstream target of miR-133a and ABHD11-AS1 subsequently exerted its biological effects via modulating the expression of SOX4 in colorectal cancer cells. Collectively, these findings manifested that the ABHD11-AS1/miR-133a/SOX4 axis may be a cogitable and promising therapeutic target for colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document